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Abstract

There are at least two major challenges for ma-
chine learning in the smart-home setting. Firstly,
the deployment context will be very different to
the the context in which learning occurs, due to
both individual differences in typical activity pat-
terns and different house and sensor layouts. Sec-
ondly, accurate labelling of training data is an ex-
tremely time-consuming process, and the result-
ing labels are potentially noisy and error-prone.
The resulting framework is therefore a combina-
tion of active and transfer learning. We argue
that hierarchical Bayesian methods are particu-
larly well suited to problems of this nature, and
give a possible formulation of such a model.

1. Introduction and Motivation

One of the central hypotheses of a “smart home” is that a
number of different sensor technologies may be combined
to build accurate models of the Activities of Daily Liv-
ing (ADL) of its residents. These models can then be used
to make informed decisions relating to medical or health-
care issues. For example, such models could help by pre-
dicting falls, detecting strokes, analysing eating behaviour,
tracking whether people are taking prescribed medica-
tion, or detecting periods of depression and anxiety. The
Sensor Platform for HEalthcare in Residential Environment
(SPHERE) project (www.irc-sphere.ac.uk) is de-
veloping a multi-modality sensor platform for smart homes
with heterogeneous network connectivity. The SPHERE
system uses three sensing technologies: environmental,
video, and wearable devices. The data from each modality
is collected in a gateway, which maintains time synchroni-
sation in the system and controls data access to ensure user
privacy. The current system is operational and is undergo-
ing scripted validation experiments, where the sensor read-
ings are processed to predict ADL against external (manual
or automatic) activity labelling.
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There are at least two major challenges for machine learn-
ing in this setting. Firstly, the deployment context will nec-
essarily be very different to the the context in which learn-
ing occurs, due to both individual differences in typical
ADL patterns, and also due to different house and sensor
layouts. Secondly, accurate labelling of training data is an
extremely time-consuming process (for example by manu-
ally annotating first person or third person video record-
ings), and the resulting labels are potentially noisy and
error-prone. “Weaker” labelling can be achieved by requir-
ing participants to self-report on the activities they are per-
forming, either in real-time or post-hoc, but it may not be
possible to verify the quality of such labels, and this is also
potentially intrusive.

Multiple heterogeneous sensors in a smart-home environ-
ment introduce different sources of uncertainty, including
failing sensors, biased readings, variable signal to noise ra-
tio, etc. As a result we need to be able to handle quanti-
ties whose values are uncertain, and we need a principled
framework for quantifying uncertainty which will allow
us to build solutions in ways that can represent and pro-
cess uncertain values. A compelling approach is to build a
model of the data-generating process, which directly incor-
porates the noise models for each of the sensors. Prob-
abilistic (Bayesian) graphical models, coupled with effi-
cient inference algorithms, provide a principled and flex-
ible modelling framework (Bishop, 2013).

2. Problem Definition

In this section we characterise the nature of the problems
that arise in a smart-home environment, arguing that a com-
bination of active and transfer learning is required.

2.1. Active Learning

Active learning is a paradigm of machine learning where
the learner has control over the selection of training ex-
amples (or labels), rather than them being presented by
nature (Cohn et al., 1996). An active learner may pose
queries, usually in the form of unlabelled data instances
to be labelled by an oracle (e.g. , a human annotator). Con-
cretely, given a set of potentially noisy training examples
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S = {(xi,yi), i = 1, . . . ,m}, where xi 2 X and yi 2 Y ,
we wish to learn a general mapping X ! Y , and we
can iteratively select a new input x̃ (which may be from
a constrained set) and request a label ỹ. Active learning
is well-motivated in many modern machine learning prob-
lems, where unlabelled data may be abundant or easily ob-
tained, but labels are difficult, time-consuming, or expen-
sive to obtain, as is the case in the smart home setting.

Early work (Cohn et al., 1996) demonstrated that it is pos-
sible to compute the statistically ‘optimal’ way to select
training data, with the observation that the optimality cri-
terion sharply decreases the number of training examples
the learner needs in order to achieve good performance.
This differs from the many heuristic methods for choosing
training data, including choosing places where we don’t
have data, where we perform poorly, where we have low
confidence, where we expect it to change our model, and
where we previously found data that resulted in learning
(see (Cohn et al., 1996) for references). Note that this
analysis gives statistical optimality for choosing the next
x̃ in terms of variance minimisation, but ignores the bias
component, which can lead to significant errors when the
learner’s bias is non-negligible. Additionally, it doesn’t al-
low for the inclusion of domain knowledge in any way.

Most active learning methods avoid model selection by
training models of one type using one predefined set of
hyper-parameters. An algorithm was proposed by (Ali
et al., 2014) that actively samples data to simultaneously
train a set of candidate models (different model types
and/or different hyper-parameters) and also select the best
model from this set. The algorithm actively samples points
for training that are most likely to improve the accuracy
of the more promising candidate models, and also samples
points for model selection. This exposes a natural trade-off
between focused active sampling that is most effective for
training models, and unbiased sampling that is better for
model selection. The authors empirically demonstrated on
six test problems that this algorithm is nearly as effective as
an active learning oracle with access to the optimal model.

2.2. Bayesian Active Learning

Active learning presents a scenario characterised by uncer-
tainty: that is, we have uncertainty not only in training ex-
amples we have seen thus far, but also in the likely utility of
different parts of the input space for improving our models.
Within a Bayesian framework, active learning can be natu-
rally conceived since uncertainty is directly modelled, and
there has been much interest in this area, particularly with
respect to nonparametric methods such as Gaussian Pro-
cesss (GPs). For example, in (Seo et al., 2000), a strategy
of active data selection and test point rejection was used for
GP Regression (GPR) based on the variance of the poste-

rior over target values.

Information theoretic active learning has been widely stud-
ied for probabilistic models. For simple regression an opti-
mal myopic policy is easily tractable (Krause & Guestrin,
2007), and central to this analysis was a theoretical bound
which quantified the performance difference between ac-
tive and a-priori design strategies. However, for other
tasks and with more complex models, such as classification
with nonparametric models, the optimal solution is harder
to compute. Current approaches make approximations to
achieve tractability. An approach that expresses informa-
tion gain in terms of predictive entropy was applied to the
GP Classifier (GPC) (Houlsby et al., 2011).

More recently, the problem of Bayesian active learning
and experimental design was examined by (Javdani et al.,
2014), where tests are selected sequentially to reduce un-
certainty about a set of hypotheses. The authors argue that
rather than minimising uncertainty, it is useful to consider
a set of overlapping decision regions induced by these hy-
potheses, and the resulting goal is to drive uncertainty into
a single decision region as quickly as possible.

2.3. Label Cost and Quality

Often we have “cheap” labels and “expensive” labels. In
the SPHERE project, cheap labels come in two forms: res-
idents will be given a smart-phone app through which re-
quests can be made in real-time for labels by the system;
or residents can be required to provide retrospective labels
for there activities at certain times (e.g. at the end of the
day). Expensive labels can be acquired by asking residents
to wear a head-mounted camera for certain periods of time,
and subsequently the video can be annotated by experts.
Some work has been done on cost-sensitive active learning
approaches that account for varying label costs while se-
lecting queries. For example, (Kapoor et al., 2007) propose
a decision-theoretic approach that takes into account both
labelling costs and misclassification costs.

Cheap labels are often of poorer quality than expensive la-
bels. Using the real-time method we may be able to get an
instantaneous activity label, but we would have no infor-
mation about the time course (i.e. start and end points) of
the activity. Using the retrospective method we may get an
approximate time course, but we are reliant on the mem-
ory and honesty of the individual. The issue of variable
labelling quality was addressed by (Donmez et al., 2009),
who modelled annotators as having different noise levels,
and showed that both true instance labels and individual
oracle qualities can be estimated. They then take advan-
tage of these estimates by querying only the more reliable
annotators in subsequent iterations active learning. How-
ever, this is not quite the same scenario as ours, since we
have variable annotation methods rather than variable an-
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notators.

2.4. Transfer Learning

A major assumption in the majority of machine learning
methods is that the training and deployment data are drawn
from the same underlying distribution. For the smart-
home application this assumption clearly does not hold. In
such cases, knowledge transfer, if done successfully, would
greatly improve the performance of learning by avoiding
the costly acquirement of labels. In recent years, transfer
learning has emerged as a new learning framework to ad-
dress this problem, and is related to areas such as domain
adaptation, multi-task learning, sample selection bias, and
covariate shift (Pan & Yang, 2010; Pan, 2014).

When learning and deploying models in a smart home en-
vironment, we have the problem that since getting labelled
data is extremely expensive, we can only realistically get
labelled data for a restricted set of homes and individuals.
We then have two separate transfer learning problems:

1. Models learnt on a set of people to a new person
2. Models learnt on a set of houses to a new house

The two transfer learning problems have potentially differ-
ent characteristics. For problem 1, different people will
have different activity patterns, and will also likely perform
certain activities in different ways. Furthermore, some ac-
tivities will be much more prevalent for some individuals
than others. For problem 2 different houses will have dif-
ferent house and sensor layouts, meaning that the order in
which activities are performed will change, the durations
of activities may change, and it will be extremely diffi-
cult to find a correspondence between sensors across the
houses, even if they are in the same room. Problem 1 calls
for learning about groups of individuals which we propose
to solve using group-level hyper-priors which can then be
transferred to a new individual.

Problem 2 can be tackled by manually introducing meta-
features, and then the feature space is automatically
mapped from the source domain to the target domain. In
(Rashidi & Cook, 2011), the authors first assign a loca-
tion label to each sensor indicating in which room or func-
tional area the sensor is located. Then activity templates
are constructed from the data for both the source and tar-
get data. Finally, a mapping is learnt between the source
and target datasets based upon the similarity of activities
and sensors. As an alternative, a recent study by (Feuz &
Cook, 2014) introduced three heterogeneous transfer learn-
ing techniques that reverse the typical transfer model and
map the target feature space to the source feature space.
The authors evaluate the techniques on data from 18 dif-
ferent smart apartments located in an assisted-care facility
and compares the results against several baselines, and ar-

gue that this method removes the need to rely on instance
to instance or feature to feature co-occurrence data.

It is well known that the hierarchical Bayesian framework
can be readily adapted to sequential decision problems
(Opper, 1998), and it has also been shown more recently
that it provides a natural formalisation of transfer learning
(Wilson et al., 2012). The latter’s results show that a hierar-
chical Bayesian Transfer framework significantly improves
learning speed when tasks are hierarchically related within
the domain of reinforcement learning. In another study
(Gönen & Margolin, 2014), the authors formulated a ker-
nelized Bayesian transfer learning framework that is a com-
bination of kernel-based dimensionality reduction models
with task-specific projection matrices, and aims to find a
shared subspace and a coupled classification model for all
of the tasks in this subspace.

3. Hierarchical Bayesian Active Transfer

Learning

In this section we will develop a class of models that may
be used to tackle the two types of transfer learning indi-
cated above, and show how active learning might be per-
formed using this model. These models draw on the in-
sights of the studies presented in this paper, but are in them-
selves novel.

The multi-class Bayes Point Machine (BPM) (Herbrich
et al., 2001) is a Bayesian model for classification, and
makes the following assumptions:

1. The feature values x are always fully observed.
2. The order of instances does not matter.
3. The predictive distribution is a linear discriminant of

the form p(yi|xi,w) = p(yi|si = w
0
xi) where w are the

weights and si is the score for instance i.
4. The scores are subject to additive Gaussian noise.
5. Each individual has a separate set of weights, drawn

from a communal prior.

For the purposes of activity recognition, assumption 2 may
be problematic, since the data is clearly sequential in na-
ture. Intuitively, we might imagine that the strength of
the temporal dependence in the sequence will determine
how costly this approximation is, and this will in turn de-
pend on how the data is preprocessed (i.e. is raw data pre-
sented to the classifier, or are features instead computed
from the time series?). It has been shown (Twomey et al.,
2015) that under certain conditions structured models and
unstructured models can yield equivalent predictive per-
formance on sequential tasks, whilst unstructured models
are also typically much cheaper to compute. The factor
graph for this model is illustrated in Figure 1, where N
denotes a Gaussian density for a given mean µ and preci-
sion t , and G denotes a Gamma density for given shape k
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Figure 1. Hierarchical community-online multi-class Bayes point
machine. A: Number of activities; R: Number of residents; N:
Number of examples; D: Number of features.

and scale q . The factor indicated by is the ‘arg-max’
factor, which is like a probabilistic multi-class switch. The
additive Gaussian noise from assumption 4 results in the
variable s̃, which is a noisy version of the score s. This
is a hierarchical multi-class extension of the Bayes point
machine (Herbrich et al., 2001), where we have an extra
plate around the individuals that are present in the train-
ing set (R), who form the “community”. Online learning
is performed using the standard assumed-density filtering
method of (Opper, 1998).

To apply our learnt community weight posteriors to a new
individual we can use the same model configured for a
single individual (i.e. R = 1) with the priors over weight
mean µw and weight precision tw replaced by the Gaus-
sian and Gamma posteriors learnt from the individuals in
the training set. This model is able to make predictions
even when we have not seen any data for the new indi-
vidual, but it is also possible to do online training as we
receive labelled data for the individual. By doing so, we
can smoothly evolve from making generic predictions that
may apply to any individual to making personalised predic-
tions specific to the new individual. In training, the prior
mean µw is set to N (0,1) and the prior precision tw is set
to G(4,0.5). The separate transfer learning problem from
house-to-house is achieved through the method of intro-
ducing meta-features of (Rashidi & Cook, 2011), and then
the feature space is automatically mapped from the source
domain to the target domain. For simplicity, we have not
shown this in Figure 1, and we assume that the features x

are already these meta-features, and that for the personali-
sation phase the mapping has already taken place.

In order to do active learning to guide the choice of label
acquisition in the online personalisation phase, we extend
the method outlined by (Kapoor et al., 2007). Firstly we
make a myopic assumption, where we only seek to label
one data point at a time. Firstly we must define a cost ma-
trix C2RA⇥A, where A is the number of activities (classes),
and Ci, j denotes the risk associated with classifying a point
i as j, and Ci,i = 0, i = 1, . . . ,A. The total cost on the com-

munity training set is

JS = Â
a2A

 

Â
i:yi=a

Cai(1� pi)+ Â
i:yi 6=a

Cia pi

!
, (1)

where pi = p(sgn( f (xi)) = 1|xi). The cost for an unla-
belled point is

Jx̃i
= Â

a2A

(Cai(1� pi)p
⇤
i
+Cia pi(1� p

⇤
i
)) , (2)

⇡ Â
a2A

((Cai +Cia)(1� pi)pi) , (3)

where p
⇤
i

is the true conditional density of the class label
given the data point, which is approximated by pi. The ap-
proximate misclassification cost is then 1

m+1 (JS + Jx̃i
). In

the method of (Rashidi & Cook, 2011), the cost L(xi) of
acquiring a label for xi is given a value in the same cur-
rency as the costs in C. Here we have n separate labelling
methods with associated costs, which we will denote by
L j(xi), j = 1, . . . ,n. We must also define G j, j = 1 . . . ,n,
where 0  G j  1, which quantifies the expected gain of a
label given by labelling method j, where perfect labelling
corresponds to G j = 1. The expected value-of-information
(VOI) criterion for a given labelling method j is then de-
fined as

VOI(x̃i, j) = JS + Jx̃i
+

m

Â
i=1

G jL j(xi)�G jL j(x̃i). (4)

Given a set of unlabelled points U , our strategy is to se-
lect cases for labelling and labelling method that have the
highest VOI

(î, ĵ) = arg max
i2U, j2{1,...,n}

VOI(x̃i, j). (5)

Note that whenever VOI(x
î
, ĵ) < 0, we have a condition

where knowing a single label does not reduce the total cost
for a given labelling method, which can be employed as a
stopping criterion if true for all methods simultaneously.

4. Conclusions

As we have seen, the smart-home setting provides chal-
lenges in terms of the deployment context and accurate la-
belling of training data, which leads to a combination of
active learning and transfer learning. We have argued that
hierarchical Bayesian methods are particularly well suited
to problems of this nature, and given a possible formulation
of such a model. We have observed that initial experiments
on artificial data using this methodology give promising re-
sults. This is preliminary work: our next steps will be to de-
ploy the various active labelling methods in the prototype
SPHERE house, which will allow us to test the active learn-
ing framework, as well as the resident-to-resident transfer
method. The house-to-house transfer method can only be
tested when multiple homes are available, which will be in
the latter stages of the SPHERE project.
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