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Abstract. Typically, when analysing patterns of activity in a smart
home environment, the daily patterns of activity are either ignored com-
pletely or summarised into a high-level “hour-of-day” feature that is
then combined with sensor activities. However, when summarising the
temporal nature of an activity into a coarse feature such as this, not
only is information lost after discretisation, but also the strength of the
periodicity of the action is ignored. We propose to model the temporal
nature of activities using circular statistics, and in particular by perform-
ing Bayesian inference with Wrapped Normal (WAN') and WA Mixture
(WN M) models. We firstly demonstrate the accuracy of inference on
toy data using both Gibbs sampling and Expectation Propagation (EP),
and then show the results of the inference on publicly available smart-
home data. Such models can be useful for analysis or prediction in their
own right, or can be readily combined with larger models incorporating
multiple modalities of sensor activity.

1 Introduction

One of the central hypotheses of a “smart home” is that a number of different
sensor technologies may be combined to build accurate models of the Activi-
ties of Daily Living (ADL) of its residents. These models can then be used to
make informed decisions relating to medical or health-care issues. For example,
such models could help by predicting falls, detecting strokes, analysing eating
behaviour, tracking whether people are taking prescribed medication, or detect-
ing periods of depression and anxiety. Since 2007, the Centre for Advanced Stud-
ies in Adaptive Systems (CASAS) research group has been collecting data from
homes with various different sensor layouts and differing numbers of residents
(see e.g. [2]).

In most of the approaches taken to date [6,7,13], classifiers are learnt which
put weights over individual sensors, and then take linear combinations of these
weights to produce a decision function for the set of active sensors at any given
time. In addition, an extra “hour-of-day” feature is often added, which in some
sense attempts to capture the periodic nature of many of the activities under
examination. However this can produce undesirable effects, since this is a rather
coarse discretisation. This in turn can result in border effects, such as activities
that are short-lived but often span an hour boundary.
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We propose instead that it is more satisfactory to take a model-based app-
roach, in which the temporally periodic nature of the activities (i.e. circadian or
diurnal rhythms) is taken directly into account. A natural framework for this is
the area of “circular” statistics [5,9,18], where univariate data is defined on an
angular scale, typically the (unit) circle.

In addition we suggest that, rather than using frequentist methods to fit cir-
cular distributions to the data, a full Bayesian approach would be advantageous
in this setting. To begin with, this allows for a principled way of incorporating
prior knowledge (or results of a previous round of inference in order to perform
on-line learning) if such knowledge exists. However, beyond this, inferring the
full distribution over the parameters facilitates model comparison and hypothe-
sis testing. Furthermore, if the results of inference are to be used in a decision-
making context, such as for the medical application being considered here, the
optimal decision is the Bayesian decision [17]. The model-based approach is also
appealing as it allows us to consider building larger models, such as hierarchi-
cal models that enable us to reason about the differences between individuals
and groups of people (using shared hyper-priors), and also to consider transfer
learning.

In order to solve the (intractable) inference problems, we will take two
approaches. Firstly, we will use Gibbs sampling [3], which is a Markov chain
Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which
are approximated from a specified multivariate probability distribution. Gibbs
sampling has the advantage of being easy to implement, and is particularly
well-adapted to sampling the posterior distribution of a Bayesian network, since
Bayesian networks are typically specified as a collection of conditional distribu-
tions.

We will also consider the deterministic approximation method Expectation
Propagation (EP) [11], a generalisation of Belief Propagation (BP) in which the
true posterior distribution is approximated with a simpler distribution, which
is close in the sense of Kullback-Leibler (KL) divergence. EP approximates the
belief states with expectations, such as means and variances, giving it much
wider scope than would be possible with BP.

2 Related Work

Many methods and statistical techniques have been developed to analyse and
understand circular data, mainly from a frequentist perspective. The popular
approaches have been embedding, wrapping and intrinsic approaches (see e.g.
[5,9]). Here we focus on the wrapping approach, and specifically the Wrapped
Normal (WAN) distribution [9]. A survey of Bayesian analysis of circular data
using the wrapping method was given by [15], and the approaches herein build
upon this work.

The use of circular statistics to model circadian or diurnal rhythms was first
considered by [9], and also discussed by [16], in which various procedures for the
analysis of circadian rhythms at population, organism, cellular and molecular
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levels were examined, ranging from visual inspection of time plots to several
mathematical methods of time series analysis.

A multivariate WA Mixture (WN M) model was defined used by [1] for the
modelling of high-rate quantisation of phase data of speech, in which the authors
used the Expectation Maximisation (EM) algorithm to learn the location and
covariance parameters. Note however that a maximisation algorithm such as EM
is capable of only returning a single point from the distribution, rather than a
full distribution over the parameters.

Recently two non-parametric Bayesian models of circular variables based on
Dirichlet Process (DP) Mixtures of normal distributions were introduced [14]:
the first was a projected DP mixture of of bi-variate normals and the second
was based on WAs. Inference was done in this case using Gibbs slice sampling,
and has the appeal that in theory it is possible to learn the number of mixture
components rather than having to pre-specify or use model comparison. However,
inference in this case is extremely expensive, with large numbers of iterations
(40,000 were used) required, and large numbers of data points are required to
fit the large number of parameters in the model.

3 Methods

Let x be a circular random variable defined on the circumference of a circle.
The corresponding circular probability density function (pdf) f(-) is periodic
with period v: f(z) = f(z + wy),Yw € Z,~ > 0. Usually the distributions are
defined over the unit circle, in which case v = 2w, but arbitrary v > 0 can
be considered by a simple rescaling of . The function f(-) integrates to 1 over
(0,7]. For notational simplicity, we will assume that all circular variables are
constrained to their principal values, obtained by taking the modulo operation
z «— x mod 7.
The circular distance between two points x, z for a given period v is given
by [9, eq.2.3.13]:
v

dy(@,2) = min (o = 2,7y = (@ = 2) = 3 = |3 = |o — 2]

. (1)

There exist distributions directly defined on the (unit) circle, such as the von-
Mises or Circular Normal distribution (see [9, section2.2.4]), but for reasons given
below we will focus on the WA distribution.

3.1 The Wrapped Normal (WAN) Distribution

A “wrapped” distribution is one that results from wrapping the pdf of a linear
random variable to the circumference a (unit) circle (infinitely many times). The
corresponding distributions are called wrapped distributions, and any continuous
pdf can be wrapped in this way. The Wrapped Normal (WA/) distribution is the
circular analog of the normal distribution, achieved by wrapping in this way. In
practice, the von-Mises and the WA distribution are very similar [9]. However,
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the wrapped Normal distribution is more convenient for Bayesian inference, as
many of the technical details can be brought over from the (well studied) Normal
distribution — for example, it is closed under convolution [9]. The probability
density function of the wrapped normal distribution is [9]

T —pu+ vk
Fonr(@; 1, 0,7) a\/ﬂ Z [;‘Qw} (2)

with € [0,27), location parameter p € [0,27), and uncertainty parameter
o > 0. We will use 7 = % to denote the precision. Because the summands of
the series converge to zero, it is natural to approximate the pdf with the finite
series:

Pwwn (@i p,009) = a\/ﬂ Z exp [W] ~ fwn (@i pm,0,7),  (3)
where only 2K + 1 summands are considered. However, one can intuitively see
that for small values of K, this will only be a good approximation for small
values of o.

The WA can also be expressed in terms of the Jacobi theta function (see [5,
eq.(2.2.15)]), which leads to a second approximation that is more accurate for
large values of o.

wa(.’E;/},7J,’y)waN(£E'M,U 7)
<1+226 = (34)" cos (T(m—u))), (4)

where only K summands are considered. Theoretical bounds are given in [§]
that show that the errors of both approximations decrease exponentially with
the number of summands, and show that the first representation performs well
for small o whereas the other performs well for large o.

3.2 Bayesian Inference

The WA distribution possesses the additive property [5], i.e. the convolution
of two WA distributed variables is also a an WA distribution. Hence for the
purposes of Bayesian inference, the conjugate prior for the location parame-
ter p of a WN distribution is another WA/ distribution, which we denote as
WNo(u; pto, 00,7). The conjugate prior for the precision 7 is the Gamma dis-
tribution, denoted by Ga(T; g, [y) for shape and rate parameters ag and [
respectively, as would be the case for the Normal distribution.

In Figure 1la we show the factor graph for the WA model, where the shading
of the x variable indicates that it is observed, and the box around x and the
WA factor is a plate, indicating that this part of the graph is repeated N times.
Inference can be performed in this model using Gibbs sampling, where we use the
approximations given in Equation 3 and Equation 4, and where we the former
is used if 02 < 0.15 and the latter in the reverse case, as suggested by [8].
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3.3 WA Mixture (WN M) Models

We define the WA Mixture (WAN M) distribution (i.e. a mixture of WA dis-
tributions) in the following way,

M
fwnm(@s 0,7, 6, M) =Y wn WN (@5 ik, 07, 7), (5)

m=1

where w € RM : Z%Zl Wy, = 1, Wy, > 0, i.e. w ~ Cat(¢) are the mixing coef-
ficients which are drawn from a categorical (discrete) distribution of dimension
M > 0 with a probability vector ¢. The conjugate prior for ¢ is the Dirichlet
distribution, with a concentration parameter vector ay € RM :a > 0.

In Figure 1b we show the factor graph for the WA M model using gate
notation for representing the mixture model [12]. ¢ is the Dirichlet distributed
variable, from which the discrete variable ¥ € R™ is drawn, where m is the
number of mixture components, representing the gate selector is sampled.

Mo To 7Y %N fo
WN Ga
N
N: Number of instances N: Number of instances
2: Time of instance x: Time of instance
(a) (b)

Fig. 1. (a) Wrapped Normal (WAN) and (b) WA Mixture (WWN M) models.

As has been noted by [14], the standard WN M model suffers from issues of
identifiability, which we also found when trying to perform inference using the
model. There the authors tackle the problem by “unwrapping” the distribution
by conditioning on the wrapping number k;, which results in a complex sampling
procedure. Here we will take a simpler approach, that also allows us to use EP
as well as Gibbs sampling.
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3.4 Approximate WN (AWN)

We approximate the WA with mixture of M normal distributions. If we insist

that M is odd, and define a vector of offsets, § = (5/2)?;‘_11\2_1, the AWN

model is defined by

|
fawn (s p, 0% M) = TZN(m;u—Fé%az). (6)
0€d

This model cascades a series of M Gaussian distributions along the real line
where adjacent distributions are a distance of + apart, all distributions share
the same variance, and the mean of the central component is constrained to
be found within the periodic range, [0,~) (this is the only component that will
fall within this range). The components whose means fall outside the periodic
range contribute to modelling by mimicking the wrapped tails of the WN model.
Indeed, as M tends towards infinity the AWN approximation approaches WA .
AWN models requires specification of three parameters: p, o2 and M, and the
factor graph for this model is shown in Figure 2a.

By modelling periodic distributions in this manner, we can approximate the
posterior distributions of the WA parameters as one would estimate Bayesian
mixture model parameters. We can again use Gibbs sampling to perform infer-
ence for the AWAN model. However, since we have replaced the WA distribu-
tion with standard normal distributions, we can also use Expectation Propa-
gation (EP). EP has a major advantage over Gibbs sampling in this setting,
which is that it is relatively easy to compute model evidence (see Equation 7
in subsection 3.6) which will allow us to do model comparison. In the first set
of experiments (see subsection 4.1 and 5.1) we will compare the two inference
methods for this model.

3.5 Approximate WN M (AWN M)

Generalisation of the AWN models to an AWN M is achieved by straightfor-
ward application of a standard mixture model gate over the parameter means,
variances and approximation factors. The factor graph for this is given in
Figure 2b, where mixing factors have been introduced.

As with the AWAN model, we can again use either Gibbs sampling or EP
to perform inference for the AWN M model. The computation of evidence
Equation 7 plays an even greater role here, since it gives us a method to select
the number of mixture components K (see 5.1). In the first set of experiments
(see subsection 4.1 and 5.1) we will compare the two inference methods for this
model.

3.6 Model Comparison

We also perform Bayesian model comparison, in which we marginalise over the
parameters for the type of model being used, with the remaining variable being
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(a) (b)
Fig. 2. (a) AWAN and (b) AWN M models.

the identity of the model itself. The resulting marginalised likelihood, known
as the model evidence, is the probability of the data given the model type, not
assuming any particular model parameters. Using D for data, 6 to denote model
parameters, H as the hypothesis, the marginal likelihood for the model H is

p(D|H) = / p(D6, H) p(6|H) 46 (7)

This quantity can then be used to compute the “Bayes factor”[4], which is the
posterior odds ratio for a model H; against another model Hs,

p(Hy|D) _ p(H1)p(D|H,) ®)
p(Ha|D)  p(Ha)p(D|Hs)

3.7 Rose Diagrams

A useful variant of the circular histogram is a “rose diagram”, in which the bars
of a histogram are replace by segments. The area of each segment is proportional
to the frequency of the corresponding group. As such, for groups of equal width,
the radius should be proportional to the square root of the relative frequency
[9]. We will use these, but with a slight abuse (since the maximum value of a
pdf is arbitrary) we will plot the WN and WA M pdfs over the rose diagrams
with the maximum of the pdf coinciding with the outside of the plot.
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Table 1. Parameter settings for toy the data generated from (a) WA distribution and
(b) WN' M distribution of Equation 9

(a) WA parameters (b) WA M parameteres
Dataset p o2 Data set u1 07 po 03
0 0.0 10.0 0 0.0 2.0 12.0 2.0
1 21.0 2.0 1 6.0 4.0 18.0 4.0
2 3.0 2.0 2 6.0 10.0 9.0 10.0
3 10.0 10.0 3 2.0 2.0 3.0 2.0

4 Experiments

All models were implemented using Infer.NET [10], a framework for running
Bayesian inference in graphical models. Model specifications will are provided in
the supplementary material accompanying this paper.

4.1 Toy Data

In order to evaluate the models, we first created toy datasets where we sampled
from WA and WN M distributed data. For testing the uni-modal models, data
were generated from WA/ distribution with the settings for p and o2 given in
Table la. For testing the mixture models, data were generated from the following
mixture model:

f(x) =0.6 WN(iE;Ml,U%,’Y) +04 WN(‘CI’.;#%J%/Y) (9)

where 11,02, 12,05 were set as in Table 1b. The first two are in some sense
“easy”, since the means are well separated, with the two cases being used to
ensure there were no inference pathologies. The third and fourth are harder
problems as the variances are large with respect to the difference in means,
where in data set 2 the variances are large and in data set 3 the variances are
smaller.

We measure the mean difference (MD) for the estimated moments of the
WA components:

1 ) RN .
MDH = EZM’Y(N%/M)L MD, = gzbi _Ui| (10)
i=1 i=1

where d.(z, ) is the circular distance defined in Equation 1 and n is the number
of random repetitions used.

4.2 The CASAS HH101 Dataset

We next examine some real-world data collected by the CASAS research group
[2]. The HH101 data set! contains 3 months of single-resident apartment data

! http://casas.wsu.edu/datasets/hh101.zip
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with partial annotations, with 30 different activities appearing in the annota-
tions. The house was equipped with motion sensors, door sensors, temperature
sensors, and ambient light sensors, which were recorded asynchronously. We
chose this data for the length of recording, and due to the fact that it was from
a single resident, to avoid further complications caused by multiple residents.
The layout of the house with sensor locations marked with circles can be seen
in Figure 3.

We note that there are sometimes errors in
the data, such as ON/OFF events not being
paired up correctly. When parsing the data
we take a conservative approach, finding only
OFF events that follow ON events. As with
the sensors, there are sometimes errors in

i j” = the activity labelling. We use the same con-

[ Fni servative method. Note also that there are

1 | ‘ sometimes activity labels that are orphaned —

i.e. there is no BEGIN/END trigger but sim-

Fig. 3. Floorplan of the CASAS ply a single label next to a sensor activation
HH101 dataset. — these are ignored.

Figure 4 shows the log of the total time spent performing each activity for
each of the labelled activities in the CASAS HH101 dataset. It’s worth noting
that this dataset is dominated by 3 activities (Sleep, Sleep_Out_Of Bed, and
Watch_TV), which is perhaps in part due to the ease of labelling these activities,
and in part due the fact that the resident was an elderly person. This will clearly
play an important role in the quality of inference, simply due to the number of
examples available.

Despite not modelling the sensor acti- s s
vations themselves, our data instances
are in fact dependent on the sensor ©
activations, since the dataset only con-
tains annotations where sensor activa-
tions exist. In order to provide samples
of the times of activity occurrences to
our models, we could take the start end
times of the activity and then re-sample
from within this range (uniformly or oth-
erwise). Here for simplicity we assume
that the sensor activations in the period
between the start and end annotations
themselves provide independent samples &
of the times of an activity.

log total time (s)

4.3 Priors Fig. 4. Log of total time spent perform-

ing each activity for each of the labelled
The period 7 of all WA distributions ,ctivities in the CASAS HH101 dataset.
in our experiments were set to 24,



288 T. Diethe et al.

representing the 24 hours in the day. In the WA model we set the location
parameter of the prior over the location to 0, and the precision to ( %) _2, mean-
ing that two o (wrapped standard deviations) in each direction will reach around
the period, which roughly corresponds to a uniform distribution over the circle.
We set the Gamma prior hyper-parameters were set to ag = 1, 5y = 1, which
simply favours smaller precisions (and therefore larger variances).

In the AWN model we set the location parameter of the prior over the
location to 3, as this is the uninformative prior for the approximated model. All
other hyper-parameters were the same as for the WA model. In the AWN M
model we set the location parameter of each of the mixture components to 7. The

. - -2 . .
prior precision was set to (%) where K is the number of mixture components.

The Gamma hyper-parameters were as with the uni-modal case.

4.4 Symmetry Breaking

In a normal mixture model, it is well known there is a symmetry in the mixture
component assignments that needs to be broken by randomly initialising each
data point to one of the components. In the AWN M model, this symmetry is
also present, but there is an additional symmetry caused by the approximation.
Fortunately, both symmetries can be broken using a different method, where
the means of the components are initialised to 77,k = 1,..., M, where M is
the number of mixture model components (not approximation components M),
i.e. we distribute the prior means evenly around the circle. Once the means have
been initialised in this way, it is no longer necessary to randomly assign the

mixture components (and in fact may slow down convergence).

5 Results

We first present results for the WA model and the AWN model using both
Gibbs sampling and Expectation Propagation (EP) on data generated from a
WAN distribution, to show that the EP AWA model is sufficiently accurate
for our purposes. This validation is useful, since although EP is a deterministic
algorithm, there is no guarantee of convergence if there are any loops present in
the graph. We then show that this accuracy carries over to the AWN M model
on data generated from an WAN M distribution. We then show results on a smart
home dataset from the Casas group.

In the following experiments we monitored the convergence of the models
after each round of inference, where a round was determined to be a single
full iteration of EP, or 100 iterations of Gibbs. The convergence criterion was
that the means of each component had not moved by more than 30 seconds
(= 7/1800 ~ 0.01) from one the previous round (other criteria are possible, but
this was simple and effective).
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5.1 Toy Data

Uni-modal Data. Details of the data generating process are in subsection 4.1
using the parameter settings in Table la, where we generated 100 data points
and performed 5 repetitions of each data set with different random seeds. The
results of learning the WA model using Gibbs sampling, and AWN using Gibbs
sampling and EP are shown in Figure 5, where performance is measured in
terms of M D, and M D, as defined in Equation 10. We can see that the AWN
model using Gibbs sampling performs almost identically to the WA model in
the estimation of both moments of the distribution. The AWA model using EP
has slightly degraded performance in terms of estimating the location pu, but
is able to accurately estimate o. The average running times were WAN: 0.12s,
AWN (Gibbs): 0.40s, and AWN (EP): 0.33s.

Model

WN(Gibbs) AWN(Gibbs) AWN(EP)

Average of MDu Average of MDo Average of MDu Average of MDo Average of MDu Average of MDo
0 0.15 0.29 0.14 0.29 0.30 0.30
1 0.07 0.13 0.06 0.13 0.06 0.13
2 0.06 0.13 0.06 0.13 0.07 0.13
3 0.15 0.29 0.14 0.29 0.15 0.29
Overall Average 0.11 0.21 0.10 0.21 0.15 0.21

Fig. 5. Results on data generated from a uni-modal WA distribution, comparing the
WAN model with AWN model for both Gibbs and EP.

Mixture Model Data. In the following experiments we generated 100 data
points in each data set, and repeated the experiments 5 times with different
random seeds. The results in Figure 6 indicate that for fairly small data sets, the
EP version of the model is in fact more accurate in terms of MD for the estimated
moments. EP and Gibbs required on average over all of the experiments ~ 20
and 2100 iterations to converge respectively, and EP reached convergence in on
average roughly one fifth of the computation time required by Gibbs sampling.

Average of MDu1l Average of MDal Average of MDu2 Average of MDo2
Data set AWNM(EP) AWNM(Gibbs) AWNM(EP) AWNM(Gibbs) AWNM(EP) AWNM(Gibbs) AWNM(EP) AWNM(Gibbs)
0 0.17 0.07 0.08 0.04 0.15 0.15 0.13 0.73
1 0.08 0.10 0.17 0.17 0.31 0.26 0.20 0.57
2 0.65 1.34 0.45 0.91 1.15 0.94 1.54 1.79
3 0.19 0.98 0.11 0.11 1.15 1.26 0.33 0.27
Overall Average 0.27 0.62 0.21 0.30 0.69 0.65 0.55 0.84

Fig. 6. Small data set: Accuracy of inference of the AWN M model on data generated
from an WAN M distribution (details in subsection 4.1 Table 1b).

The results in Figure 7 indicate that for larger data sets, the Gibbs version of
the model is more accurate in terms of MD for the estimated moments than the
EP version. This is explained by the difficulty of data set “2”, which corresponds
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to the “pathological” case outlined in the model comparison discussion below,
and as such the errors that we see EP making here are that it estimates there
there is a single mode rather than two, which is not wholly unreasonable. EP
and Gibbs required on average over all of the experiments roughly 28 and 1115
iterations to converge respectively, and EP reached convergence in roughly half
the computation time than is required by Gibbs sampling.

Average of MDul Average of MDol Average of MDp2 Average of MDo2
Data set AWNM(EP)  AWNM(Gibbs) AWNM(EP) AWNM(Gibbs) AWNM(EP) AWNM(Gibbs) AWNM(EP) AWNM(Gibbs)
0 0.06 0.10 0.01 0.12 0.05 0.62 0.02 1.32
1 0.06 0.14 0.04 0.23 0.07 0.59 0.06 111
2 0.77 1.41 0.43 0.87 2.16 1.23 0.38 1.45
3 0.35 0.24 0.20 0.18 1.02 0.46 0.31 0.29
Overall Average 0.31 0.47 0.17 0.35 0.82 0.72 0.19 1.04

Fig. 7. Larger data set: Accuracy of inference of the AWAN M model on data generated
from an WAN M distribution (details in subsection 4.1 Table 1b).

Model Selection. We are able to take advantage of the fact that we are using
EP in the AWN M model to perform model selection, since the model evidence
computations are more straightforward for EP than for Gibbs sampling, and
in fact have already been implemented in Infer. NET. In order to test the abil-
ity to use model evidence for model selection purposes, we ran the following
experiment. We generated data from a WA M distribution with K = {1,2,3,4}
components. We sampled the mixture weights for the components from a sym-
metric Dirichlet distribution Dir(10, 10) (which gives roughly equal mass to each
of the components) and then sampled 200 data points from the mixture distri-
bution according to those weights. We then computed the model evidence for
the AWN M model with K = {1,2,3,4} components, i.e. we learnt a model for
each possible pair of true K and model K (16 in total). The results are shown
in Figure 8. The true K values lie on the diagonal (i.e. where the correct K
was supplied to the model). As can be seen in bold, the model gives the highest
evidence to the those values of K across each row, meaning that by selecting the
model with the highest evidence we would indeed choose the correct value for K.
However Figure 9 shows a seemingly

pathological case. In this example the Model K
true means @1 = 6, ue = 9 are quite 4 1 2 3 4
close together, with a large 02 = 1 7103 -712.6 -7189 -720.1

-763.9 -742.2 -746.6 -751.5
-819.1 -811.4 -810.7 -815.3
-858.5 -8469 -860.5 -841.7

10 for both components. We can see
that the model at first seems to con-
verge to the correct means, but then
appears to diverge away. At the end

of this inference run, the estimated Fig. 8. Model evidence computation for the

weights for the components were w1 & A1)V A7 AL model using EP. See text for
0.02,wy =~ 0.98, showing that the getails.

model had put all of the mass on the
second component, with the mean being close to the average of the true mean

~ w N
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Fig. 9. A pathological case. The z-axis in both figures shows the EP iteration count.
The true means u; = 9,2 = 6 are quite close, with a large ¢ = 10 for both. Note
that the model evidence continues to rise, despite the estimated means diverging from
the truth. This is because in this case there is insufficient evidence for a bimodal model

due to the high variances.
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WN(11.28,1.32,24.0)
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(a) Bathe
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WN(7.11,0.52,24.0,0.5)
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Midnight
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(c) Sleep
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WN(11.13,4.23,24.0,0.6)
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(b) Dress

Sleep_Out_Of_Bed
WN(8.26,0.40,24.0,0.1)
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Midnight

2500
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6pm
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(d) Sleep_Out_Of_Bed

Fig. 10. Posterior means of the AWN M model fitted to activities from the CASAS
HH101 dataset. Note that the model correctly captures the multi-modal nature of the
activities. The WA parameters are given in the subtitles of each subplot (mixture

weights not shown).
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K

Activity 1 2 3
Bathe -2.65894388 -2.66002408 -2.661022468
Bed_Toilet_Transition  -10.1968674M -2.333433738 -2.349457831
Cook -4.919811788 -2.632668888 -2.284385383
Cook_Breakfast -2.25312478 -2.254319898 -2.255758157
Cook_Dinner -4. 6 -2.324962358 -4.364614997
Cook_Lunch -1.750226804 -1.763010308 -1.774391753
Dress -4.233888048 -3.645742383 -3.72773071@
Eat -2.827253888 -2.855440418 -2.88010362
Eat_Breakfast -2.293162438 -2.297160753 -2.300803758
Eat_Dinner -2.220389978 -2.163091922
Eat_Lunch -2.010291974 -2.031423358 -2.050072993
Enter_Home -3.487927460 -3.40022948 -3.352487041
Evening_Meds -3.223430398 -2.777507102 -2.766882103
Groom -2.167755108 -1.994489798 -2.321428574
Leave_Home -3.453540448 -3.391533756 -3.2366178189
Morning_Meds -4.422052198 -2.312746148 -2.316844608
Personal_Hygiene -4.2401428T0 -4.241790438 -4.144003308
Phone -3.553333338 -3.283061224 -3.3214

Read -5.354507380 -2.660965548 -2.62583684
Relax -3.424166661 -3.185714288 -3.153554422
Sleep -3.569722478 -3.219689468 -3.219689468
Sleep_Out_Of_Bed -3.955730678 -3.896021178 -3.89658031
Toilet -2.164069128 -3.981019068 -3.964657048

Wash_Breakfast_Dishes -2.65694039@ -2.661735098 -2.666066228
Wash_Dinner_Dishes -3.874854160 -2.685444448 -2.520513889

Wash_Dishes -4.064689338 -3.543100828 -3.334431418
Wash_Lunch_Dishes -1.510576132 -1.534403292 -1.555349794

Fig.11. Log evidence on the CASAS HH101 dataset for different values of mixture
components M.

components. Interestingly, the model evidence continues to rise throughout, indi-
cating that the model has favoured parsimony, which in the sense of Occam’s
razor would be the sensible thing to do.

5.2 Smart Home Data

We now give results on some real-world data from the CASAS HH101 dataset,
as described in subsection 4.2. We will use the AWN M model for the following
experiments, where we run inference with M = 1,2, 3,4 mixture components,
M = 3, priors set as given in subsection 4.3, and symmetry breaking initialisa-
tion as given in subsection 4.4. We use model evidence Equation 7 to choose the
number of mixture components K. We plot the posterior moments for four of
the activities in Figure 10, where we take the posterior means p,,,m =1,..., M
and the posterior mean of 7,,,, m = 1, ..., M, the posterior mean of the mixture
weights ¢, and construct a WN M distribution using these parameters.

Note that many of the activities are clearly multi-modal, such as the “Dress”
activity in Figure 10b, and the model is able firstly to correctly identify the
number of mixture components, and also to capture the multi-modal nature of
the periodicity of the activities. The “Sleep_-Out_Of_Bed” activity is interesting
as there is a prominent “lobe” of the distribution from the narrower of the mix-
ture components. Figure 11 shows the log model evidence scaled by the number
of data points for the models learnt with K = 1,2,3 mixture components for
each activity, showing the number of components chosen by model selection.
Note that in some cases it is quite clear cut that one of the models should be
preferred, but in other cases the choice is more borderline.
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6 Discussion

The results indicate that the Approximate WN M (AWN M) is able to accu-
rately estimate the moments of WA Mixture (WN M) distributed data, as
demonstrated by the experiments on the toy dataset. Furthermore, the Expec-
tation Propagation (EP) implementation is appealing, since it gives comparable
results to the Gibbs sampling approach, but is generally faster and also enables
model selection through evidence computation.

The inferred posteriors could then be used to (a) generate continuous fea-
ture(s) to be used in a classifier (probabilistic or otherwise), e.g. by using the log
probability of activities given time-stamp. We would expect to see some improve-
ment over a simple “hour-of-day” feature as it is a more refined representation
of the distribution over time.

Potentially more interesting, however, is that since we have full distribution
over the parameters, we can use these in a larger probabilistic model. For exam-
ple, we can easily perform a modelling of the periodicity of the sensors activations
in the same way, and then learn a mapping from sensor to activity which would
in effect be a form of periodic regression.

7 Conclusions

In this paper we have shown that Bayesian inference for the WA distribution
(using Gibbs) is easy to implement and accurate for data generated from a
the model. The WAN M suffers from identifiability issues, so we introduced an
approximate version AWN which can be easily implemented using either Gibbs
or EP in the modelling framework Infer.NET [10], and that this model accurately
approximates the WA model. We then showed that we could extend this to
the mixture modelling AWN M, and demonstrated how model evidence can
be used for model selection (choosing the number of mixture components). We
then showed some results of preforming inference using the AWN M model on
a real-world smart home data set.

7.1 Further Work

An appealing extension would be to construct a multivariate WA M model
to model all of the sensor activations (from binary sensors) in a smart home
together, with the resulting covariance matrix giving a description of the peri-
odic linkage between sensors. Following on from this, it would be interesting to
combine such a multivariate model with the univariate model, either by adding
an extra dimension for the activities, or by constructing a circular regression
task, for example by using the circular regression approach outlined by [15].

Another appealing extension would be to consider a hierarchical model for
different residents in a given home, where common hyper-priors are shared
between the residents, and individual priors are then inferred for each resident.
This would be a natural path to being able to transfer such models to new homes
and new residents.
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