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ABSTRACT

We introduce and analyse a flexible and efficient implemen-
tation of Bayesian dictionary learning for sparse coding. By
placing Gaussian-inverse-Gamma hierarchical priors on the
coefficients, the model can automatically determine the re-
quired sparsity level for good reconstructions, whilst also au-
tomatically learning the noise level in the data, obviating the
need for heuristic methods for choosing sparsity levels. This
model can be solved efficiently using Variational Message
Passing (VMP), which we have implemented in the Infer.NET
framework for probabilistic programming and inference. We
analyse the properties of the model via empirical validation
on several accelerometer datasets. We provide source code to
replicate all of the experiments in this paper.

Index Terms— Sparse Coding, Dictionary Learning,
Bayesian, Accelerometers

1. INTRODUCTION

Our motivating application is Activity Recognition (AR),
which is usually performed for the purposes of understand-
ing the Activities of Daily Living (ADL) of a given indi-
vidual. One of the most popular methods for the study of
ADL is through the use of a wearable device containing an
accelerometer, often combined with gyroscopes, which mea-
sure the degree of rotation as the device rotates in any its axes.
Since gyroscopes consume several orders of magnitude more
power than low power accelerometers, we are most interested
in accelerometers only.

Traditional methods for classification of accelerometer
signals involve computing features in both the temporal and
frequency domains over a temporal window - see e.g. [1].
One effect of this is to reduce the temporal dependence of
neighbouring examples, which enables the use of standard
classification algorithms. There is a trade-off here: longer
windows mean less dependence and less computational bur-
den; however in extremis, the probability that a given window
involves only a single activity class diminishes. We are there-
fore interested in a compact representation of the signals, that
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also contains the necessary information to be discriminatory
between activity classes.

1.1. Dictionary Learning

Dictionary Learning, also known as Sparse Coding [2] is
a class of unsupervised methods for learning sets of over-
complete bases to represent data in a parsimonious manner.
The aim of sparse coding is to find a set of vectors di, known
as a dictionary, such that we can represent an input vector
x 2 Rn as a linear combination of these vectors:

x =
kX

i=1

zidi s.t. k � n. (1)

While there exist efficient techniques to learn a complete set
of vectors (i.e. a basis) such as Principal Component Analy-
sis (PCA)[3], an over-completeness can achieve a more sta-
ble, robust, and compact decomposition than using a basis
[4]. However, with an over-complete basis, the coefficients
zi are no longer uniquely determined by the input vector x.
Therefore, in sparse coding, we introduce additional spar-
sity constraints to resolve the degeneracy introduced by over-
completeness.

Sparsity is defined as having few non-zero components
zi or many that are close to zero. The sparse coding cost
function on a set of m input vectors arranged in the columns
of the matrix X 2 Rn⇥m as

min
Z,D

kX�DZk2F + �
nX

i=1

⌦(zi)

s.t. kdik2  C, 8i = 1, . . . , k.

where D 2 Rn⇥k is the set of basis vectors (dictionary),
Z 2 Rk⇥n is the set of coefficients for each example, and ⌦(.)
is a sparsity inducing regularisation function, and the scaling
constant � determines the relative importance of good recon-
structions and sparsity. The most direct measure of sparsity
is the L0 quasi-norm ⌦(zi) = 1(|zi| > 0), but it is non-
differentiable and difficult to optimise in general. A common
choice for the sparsity cost ⌦(.) is the L1 penalty ⌦(zi) =Pn

i=1 |zi| (see [5] for a review). Since it is also possible to
make the sparsity penalty arbitrarily small by scaling down zi
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and scaling di up by some large constant, kdk2 is constrained
to be less than some constant C.

Since the optimisation problem is not jointly convex in Z
and D, sparse coding consists of performing two separate op-
timisations: (1) over coefficients zi for each training example
xi with D fixed; and (2) over basis vectors D across the whole
training set with Z fixed. Using an L1 sparsity penalty, sub-
problem (1) reduces to solving an L1 regularised least squares
problem which is convex in zi which can be solved using stan-
dard convex optimisation software such as CVX [6]. With a
differentiable ⌦(·) such as the log penalty, conjugate gradient
methods can also be used. Sub-problem (2) reduces to a least
squares problem with quadratic constraints which is convex
in d, for which again there are standard methods available.

1.2. Online Dictionary Learning

As described thus far, dictionary learning algorithms require
the entire set of training signals X, which puts a limitation on
the sizes of problems that can be tackled, and means that they
cannot operate in an online streaming scenario. An online
version of dictionary learning was introduced by [7], which
involved iteratively finding the sparse representation for each
data point xi as it arrives, and then updating D using a block-
coordinate approach.

1.3. Our Contributions

• We improve on existing methods for Bayesian Dictionary
Learning (BDL), with a more stable model • We give an
efficient implementation using deterministic approximations
• We show that priors that do not enforce sparsity can still
result in sparse representations, whilst giving better recon-
structions • We demonstrate how such models can be applied
to accelerometer signals

2. RELATED WORK

A Bayesian approach to the dictionary learning problem is
highly appealing for several reasons. Firstly, it is possible to
learn the noise level directly from the data, rather than having
to specify it or estimate using crude heuristics. Secondly, it
allows us to consider building larger models, such as hierar-
chical models that enable us to reason about the differences
between individuals and groups of people, and also to con-
sider transfer learning.

A hierarchical Bayesian model for dictionary learning
was first introduced by [8], in which a Gaussian-inverse
Gamma hierarchical prior was used to promote the sparsity
of the representation. The authors argued that better learning
was achieved compared to baselines in the case where there
is a limited number of training signals. We will discuss the
relation to our work in section 3.

An appealing nonparametric Bayesian approach to the
problem was introduced by [9], which allows an adapted dic-
tionary size using an Indian Buffet Process prior. Currently,
however, there are no efficient methods for inference in this
class of models, which somewhat limits their use.

In terms of the application area of interest here, feature
learning was applied to AR from accelerometer data by [10],
where the authors investigated amongst other things PCA and
auto-encoder networks. Dictionary learning would be a nat-
ural extension here. Following on from this, a form of shift
invariant sparse coding was proposed for the same task by
[11]. The authors use an approach that can be seen as a form
of convolutional sparse coding, with promising classification
performance.

3. METHODS

We first give a generative model for eq. (1), in which we posit
that our signals are generated by the same linear combination
of bases, and give parametric forms for the (latent) variables
and include a noise model.

X = DZ+N,

p(D) =
nY

i=1

kY

j=1

N (di,j ;↵i,j ,�
�1),

p(↵) =
nY

i=1

kY

j=1

N (↵i,j ; 0, 1),

p(�) =
nY

i=1

kY

j=1

Ga(�i,j ; 1, 1),

p(Z|⌧ ) =
kY

i=1

mY

j=1

N (zi,j ; 0, ⌧
�1
i,j ),

p(⌧ ) =
kY

i=1

mY

j=1

Ga(⌧i,j ; a, b),

p(N) =
nY

i=1

mY

j=1

N (n; 0,�)

p(�) = Ga(�; a, b), (2)

where N is the Gaussian distribution for a given mean and
variance and Ga is the Gamma distribution for a given shape
and rate.

This model builds on that of [8], and is shown in fig. 1.
There are several key differences. Firstly, rather than using a
fixed value for �, which defines the precision of the dictionary
atoms, we instead put a Gamma prior over �, which allows the
dictionary atoms to be automatically scaled. In their experi-
ments, Yang et. al. used a value of � = 1 when using Gibbs
sampling, and a value of � = 10�8 when using Variational
Inference. It is not clear why they had to make this decision,
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Fig. 1: Factor graph representing a hierarchical Bayesian
model for dictionary learning.

but our experiments show that the additional Gamma prior ap-
pears to obviate the need to do this. Furthermore, we place an
additional level of hierarchy through the variables ↵ on the
means of the dictionary components, which can aid online
learning.

3.1. Inference

In this work, we employ Variational Message Passing (VMP),
which is an efficient deterministic approximation algorithm
for applying variational inference to Bayesian graphical mod-
els [12]. Like Belief Propagation (BP) and Expectation Prop-
agation (EP) [13], VMP proceeds by sending messages be-
tween nodes in the network and updating posterior beliefs us-
ing local operations at each node. Each such update increases
a lower bound on the log evidence at that node, (unless al-
ready at a local maximum). VMP can be applied to a very
general class of conjugate-exponential models because it uses
a factorised variational approximation, and by introducing ad-
ditional variational parameters, VMP can be applied to mod-
els containing non-conjugate distributions. The VMP frame-
work also allows the lower bound to be evaluated, which can
be used both for model comparison and for detection of con-
vergence.

To break symmetry, we randomly initialise the dictionary
elements to independently and identically distributed (IID)
draws from a standard normal distribution. For consistency,
we use the same random seed for all experiments.

4. EXPERIMENTS

4.1. Data Sets

HAD dataset [1]

This involved 30 participants aged 19-48 years and six activ-
ities were recorded. Each participant wore a smart-phone on

the waist, with tri-axial linear acceleration and tri-axial angu-
lar velocity capture using its embedded accelerometer and gy-
roscope at a constant rate of 50 Hz. Annotation was done us-
ing video-recordings. Each sequence is on average 7 minutes
long. The activities performed were: 1. Walking 2. Ascend-
ing stairs 3. Descending stairs 4. Sitting 5. Standing 6. Lying
down.

SPHERE challenge dataset [14]

This dataset has been collected by our research group in our
smart home deployment and made public as a challenge1. The
task is prediction of posture and ambulation of participants
who wore a tri-axial accelerometer on the dominant wrist.
The accelerometers record data at 20 Hz, with a range of ±8
g. Here we examine a subset of the labels available in the
dataset that are also found in the HAD dataset, i.e. : 1. Lie
2. Stand 3. Walk

4.2. Data pre-processing

The signal streams were split into windows of 3 seconds in
length, from which we computed the magnitude of the ac-
celeration vector and subtracted 1 (gravitational force). The
windowed signals were then normalised to have unit `2-norm

In our comparisons with non-Bayesian sparse coding, we
used the SPArse Modeling Software (SPAMS) toolbox 2, and
in particular we used the online dictionary learning method
described in [7].

We follow [7] and used the regularisation parameter � =
1.2/

p
m in all of our experiments (⇡ 0.1 for HAD and ⇡

0.03 for SPHERE). The 1/
p
m term is a classical normalisa-

tion factor, and the constant 1.2 was shown to yield about 10
nonzero coefficients in their experiments.

The methods described here were all implemented using
Infer.NET [15], which is a framework for running Bayesian
inference in graphical models, and provides a rich modelling
language for a wide variety of applications. In our experi-
ments we compile and run the code using Mono3, an open
source implementation of Microsoft’s .NET, running on OS-
X and Linux.

4.3. Reconstruction

In order to test reconstruction, in all cases we take the dic-
tionary learnt on the training set (2D Gaussian arrays in the
Bayesian methods), and first compute coefficients for the test
signals using this dictionary. We then reconstruct the signals
using the trained dictionary and inferred coefficients.

For the performance metric for the quality of reconstruc-
tions we will adopt the commonly used root-mean-square er-
ror (RMSE) =

pPn
t=1(x̂t � xt)2/n.

1
http://irc-sphere.ac.uk/sphere-challenge/home

2
http://spams-devel.gforge.inria.fr/

3
http://www.mono-project.com/
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5. RESULTS AND DISCUSSION

5.1. Convergence of VMP

Before continuing we will first analyse the convergence prop-
erties of VMP for the models defined herein. VMP is a
deterministic approximation algorithm, and for well-behaved
problems the model evidence (or marginal likelihood) will
always increase and will converge to a local maximum. We
follow [12], and define convergence by evaluating the model
evidence in the variational posterior after each full round of
message passing, checking that the value of the bound does
not decrease by more than some tolerance. We will refer to
this as “iterative model comparison” (IMC) henceforth.

(a) Convergence of model evidence.

(b) Convergence of hold-out reconstruction error.

Fig. 2: Convergence plots of marginal likelihood and recon-
struction error.

In figs. 2a and 2b we have plotted the convergence of the
model evidence on a subset of the HAD dataset and the re-
construction error on a hold-out test set respectively. Here we
used 1000 instances for training, and computed the RMSE on
200 instances from the test set. In order to do so, we had to
use a convergence criterion for the inference of test set coeffi-
cients and reconstructed signals, for which we used IMC with
a tolerance of 10�4. We let the message passing run for 20
iterations even if it would have passed the IMC criterion. It
is interesting to note that while the evidence for each of the
models follows similar convergence paths, the reconstruction
errors are clearly in favour of the non-sparse model.

For all further experiments we used the IMC method with
a tolerance of 10�3 for dictionary learning, coefficient esti-
mation, and reconstruction.

5.2. Sparsity

To compute sparsity we compute the norm of the means
each of the coefficient posterior vectors, and then threshold
at a value of 10�4 relative to this norm. We show a Hinton
diagrams for the coefficients learnt for 50 example signals
from the HAD dataset, using the base model (i.e. no norm
constraints), with sparse (Ga(0.5, 10�6)) and non-sparse
(Ga(1, 1)) priors in fig. 3a and fig. 3b respectively. Note that
in the case of non-sparse priors, the resultant coefficients are
still very sparse.

(a) sparse (Ga(0.5, 10�6)) priors, average sparsity
0.96

(b) non-sparse (Ga(1, 1)) priors average sparsity 0.84

Fig. 3: Hinton diagram for the base model with (a) and with-
out (b) sparse priors, whose rows give the expected 128-
dimensional mean of the coefficients of a sample of 50 sig-
nals.

5.3. Learnt dictionaries and bases

In fig. 4 we can see some randomly selected elements from
the dictionary created using 128 bases from the HAD dataset,
and in fig. 5 we can see the coefficients for an example sig-
nal chosen from each of the 6 activity classes. It is clear that
the more passive activities (sitting, standing, lying) are repre-
sented by fewer active bases. Furthermore, it would appear
that these coefficients have the potential to be discriminative
of the activity being performed.

In fig. 6 we can see the reconstructions of two example
signals from the accelerometer dataset. The shaded regions
show the standard deviation (SD) of the Gaussian marginals.
It is worth noting that reconstruction uncertainty is not avail-
able from methods such as SPAMS.



Fig. 4: 16 example bases from the dictionary of 128 bases
inferred by BDL using the non-sparse priors.

Fig. 5: Coefficients from accelerometer signals from each of
the 6 activity classes using 128 bases inferred by BDL using
the non-sparse priors.

In table 1 we can see a comparison of average reconstruc-
tion error and sparsity of BDL with SPAMS on dataset 1. In
almost all cases, the reconstruction produced by BDL are su-
perior to those by SPAMS, whilst achieving comparable spar-
sity, even when non-sparse priors are used. The sparsity en-
forcing priors do indeed result in sparser solutions, but at the
cost of reconstruction error, up until we use 512 bases, at
which the over-completeness justifies the use of sparsity in-
ducing priors.

Table 1: Average test set reconstruction error and sparsity on
dataset 1.

SPAMS BDL Sparse BDL

Bases RMSE Sparsity RMSE Sparsity RMSE Sparsity
64 0.0480 0.71 0.0519 0.88 0.0293 0.62
128 0.0457 0.84 0.0400 0.94 0.0276 0.84
256 0.0438 0.92 0.0316 0.99 0.0288 0.93
512 0.0423 0.96 0.0224 0.99 0.0231 0.96

Fig. 6: Reconstructions of two example accelerometer sig-
nals using 128 bases inferred by BDL using the non-sparse
priors. The original signal is shown in blue, with the recon-
structions shown in blue with ± one standard deviation shown
as a shaded region.

5.4. Activity Recognition

Here we present results on the use of the computed coeffi-
cients as features in a classification algorithm for the purposes
of AR on the HAD and SPHERE datasets. Do to space limita-
tions, the results presented here should be regarded as a proof
of concept. As such, we will not present extensive compar-
isons with other feature generation methods or classification
models.

We employ the multi-class Bayes Point Machine (BPM)
[16], which is a linear Bayesian model for classification, and
is also implemented in Infer.NET. Here we will use the max-
imum a-posteriori estimates of the coefficient means gener-
ated using 64 bases, to which we add a bias feature to give
a 65-dimensional feature vector for the classifier. The metric
of performance is the per-class one-versus-rest area under the
Receiver Operating Characteristic (ROC) curve.

Table 2: Classification results on the HAD dataset. The val-
ues given are the per-class area under the ROC curve.

Activity BDL sparse BDL SPAMS

Walking 0.73 0.83 0.88
Ascending stairs 0.63 0.60 0.83
Descending stairs 0.61 0.34 0.82
Sitting 0.74 0.72 0.89
Standing 0.51 0.43 0.98
Lying down 0.95 0.95 0.95

Average 0.70 0.65 0.89

The results are presented in tables 2 and 3 for the HAD
and SPHERE datasets respectively. We note that whilst the
classification performance of BDL on HAD is acceptable, it
is markedly better for SPAMS. It would appear that despite
the better reconstruction performance of BDL, the bases es-



Table 3: Classification results on the SPHERE dataset. The
values given are the per-class area under the ROC curve.

Activity BDL sparse BDL SPAMS

Walking 0.55 0.51 0.46
Standing 0.69 0.62 0.44
Lying down 0.86 0.85 0.46
Average 0.70 0.66 0.45

timated by SPAMS are more discriminative. However on the
SPHERE dataset this trend is reversed. Wider empirical vali-
dation is required to fully understand these results.

6. CONCLUSIONS AND FURTHER WORK

We have presented a model that is an improvement on existing
methods for Bayesian Dictionary Learning, and have given an
efficient implementation using Variational Message Passing.
We have shown that even in the over-complete settings, priors
that do not explicitly enforce sparsity can still result in sparse
representations, whilst giving better reconstructions. We have
shown how such models can be applied to accelerometer sig-
nals, both for reconstruction, and for Activity Recognition,
although it is also clear that this is a powerful approach that
can be applied to a wide range of signals.

There are many possible avenues for further work. With
regards to the accelerometer data itself, as it stands we have
not accounted for the orientation of the device, which in gen-
eral is not knowable directly from the accelerometer signal
alone. There are heuristic methods to estimate the optimisa-
tion, but it would be desirable to integrate this directly into
the model.

As seen above, the current pipeline would involve using
the maximum a-posteriori estimates of the coefficient means
as features in a classifier. it is conceivable however, to con-
struct a model that incorporates both the dictionary learning
and classification, in a similar fashion to the (non-Bayesian)
approach of [17]. The resultant model should be able to learn
bases that are simultaneously useful for reconstruction and
classification.

It would be interesting to explore non-parametric ap-
proaches, such as [9], as long as the efficiency that is the
result of using deterministic approximations (such as VMP),
and graceful degradation with noisy or corrupted signals is
retained.

Finally, it would be interesting to see if the framework
can be adapted to perform Convolutional sparse coding akin
to [18], for example by setting up a Toeplitz structure within
the graphical model.

Source code to reproduce all of the experiments in this
paper is provided at: https://github.com/IRC-SPHERE/

bayesian-dictionary-learning.
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