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ABSTRACT
The SPHERE project is devoted to advancing eHealth in a smart-
home context, and supports full-scale sensing and data analysis
to enable a generic healthcare service. We describe, from a data-
science perspective, our experience of taking the system out of the
laboratory into more than thirty homes in Bristol, UK. We describe
the infrastructure and processes that had to be developed along the
way, describe how we train and deploy Machine Learning systems
in this context, and give a realistic appraisal of the state of the
deployed systems.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing→Health informatics; •Hardware→ Sensor ap-
plications and deployments; • Information systems→ Sensor
networks; Data streaming; • Social and professional topics →
Remote medicine;
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1 INTRODUCTION
Many countries are now experiencing demographic challenges,
and subsequently traditional regimes of health-care are in need of
re-examination. According to the United Nations [21]:

By 2030 the world’s population is projected to rise by
more than 1 billion, bringing the total to over eight
billion [. . . ] the fastest growing segment of the popu-
lation will be the over 65s - there will be 390 million
more of them in 2030 than in 2015

This, coupled with a rise in chronic health conditions, is accelerat-
ing the trend towards the diagnosis, treatment, and management
of a wide variety of health-related issues in the home. In this con-
text, advances in Ambient Assisted Living (AAL) are providing
resources to improve the experience of patients, as well as inform-
ing necessary interventions from relatives, carers and health-care
professionals [29].

With the aim of addressing these issues, the UK-funded “Sensor
Platform for HEalthcare in a Residential Environment (SPHERE)”
project [34, 35, 38] has designed a multi-modal system driven by
data analytics requirements. The system was first tested in a single
test-bed house, now with deployment underway in a general popu-
lation of 100 homes in Bristol (UK). The datasets collected will be
made available to researchers in a variety of communities.

In order to create such a system, there are many challenges,
including (but not limited to) hardware and software engineering,
ethics, user acceptance, and data handling procedures. In this paper
we will focus on the challenges around developing and deploying
the data analytics and Machine Learning (ML) pipeline within the
SPHERE project. We will cover the following:

• The general purpose and context of the SPHERE system and
its data. (Section 2).
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• Our approach to building reproducible ML workflows that
are compute-on-demand, which led us to develop the Hyper-
Stream system (Section 3).

• General challenges when deploying an ML pipeline within
the SPHERE system, including issues such as data and anno-
tation collection, data integrity testing and pre-processing,
coping with noise and abnormalities with the sensors (Sec-
tion 4).

• Details of model deployment at three time points: before
deployment, during data collection in the houses, analysis
after data is received back (Sections 5.2, 5.3 and 6).

• Approaches to verifying the integrity of the results (Sec-
tion 7).

1.1 Related Work
Early attempts at smart-home projects, such as PRIMA [3], H-
SAUDE [10], and Place Lab [19], whilst making some progress
with approaches to data fusion and ML, essentially failed due to
the immaturity of the supporting technologies, but also due to is-
sues around acceptance [1]. In terms of the latter, there has been a
general shift in attitudes towards smart-home technology (as evi-
denced by the rise of commercial products), but can also be further
mitigated with careful user studies, as have taken place during the
SPHERE project (e.g. [4, 6]).

The Centre for Advanced Studies in Adaptive Systems (CASAS)
project, based at Washington State University, has instrumented
and published data for more than 50 smart environments (homes
and offices) using a re-usable methodology [20]. The CASAS re-
search group focus on many aspects of Activity Recognition (AR) in
smart environments, and provide a number of annotated datasets1.
In general, the research focuses on presence detection using Passive
Infra-Red (PIR) sensors, ambient environmental sensors (light/ tem-
perature), and appliance sensors (taps, doors, cupboards), but for
the main part does not examine cameras or wearable devices. As
such, not only are the potential insights from the data somewhat
limited, but also the scale of the task in terms of data processing,
storage, transmission and analysis is far less than we encounter in
a fully instrumented setup.

2 THE SPHERE SYSTEM
The SPHERE system [34, 38], developed primarily at the University
of Bristol, uses three sensing modalities: environmental, video,
and wearable, as well as collecting contextual information through
questionnaires.

The environmental sensors include humidity, temperature, air
quality, noise level, luminosity, occupancy, door contacts, and utility
(water, electricity) consumption, centrally and at appliance/ faucet
level. The currently deployed system uses 40 nodes providing more
than 90 data streams, all structured and time-stamped to establish
context and temporal relationships.

The video sensors are RGB-D devices which are placed in vari-
ous locations, such as the living room, kitchen, corridor/hall and
staircases. The video sensors allow obtaining of the cadence, gait
and 3D trajectory of the residents throughout the smart environ-
ment. Through the use of a real-time tracker based on RGB-D [8],
1http://casas.wsu.edu/datasets/

Figure 1: Top left: the first “SPHERE house”. Bottom left: top
view of the SPW-1 wearable circuit-board. Right: an RGB-D
camera placed inside a house.

these are capable of generating black-and-white silhouettes of any
people found in the images that can be used for identification of
people or the activities that they are undertaking, as well as calorific
consumption [31] and quality of movement [23].

The wearable sensors are custom-developed low-maintenance
Bluetooth Low Energy (BLE) devices with dual accelerometer data
[18]. These support dual operation mode (connection-oriented
and extra-low energy connection-less communication modes) to
provide full 25Hz acceleration measurements in addition to a lo-
calisation service, using triangulation from the Received Signal
Strength (RSS) as measured at each of the BLE access points within
the house (this will be discussed in Section 5).

The data from each sensor cluster is collected in a SPHEREHome
Gateway, which maintains time synchronisation in the system and,
in addition, controls data access to ensure user privacy. The data
from the SPHERE Home Gateway is collected by a heterogeneous
data management platform (SPHERE Data Hub), which manages
data access and will allow a dynamic library of data analytics ser-
vices to be available for registered end users.

The current system is operational and before deployment un-
derwent scripted validation experiments, where multiple-sensor
data were processed to establish Activities of Daily Living (ADL)
against external (manual or automatic) activity tagging. Since de-
ployment, the data from the sensing sub-systems are being fused
and processed in real-time for activity and health monitoring in
longitudinal and focused studies.

One of the key objectives of the SPHERE project is to deliver
datasets with a strong focus on the richness of meta-data anno-
tations, as well as the experimental and user contexts in order to
provide to the wider research community a platform for improved
understanding of their roles in behavioural trends for healthcare. Ex-
amples of this include; the H130 dataset [30] which contains RGB-D
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images from the cameras along with data from two accelerometers
for activity recognition; the “SPHERE Challenge” [33], hosted by
http://drivendata.org and presented at ECML-PKDD 2016 (discussed
further in Section 5.2); environmental sensor data of several people
performing unscripted cooking activities in the SPHERE kitchen
[37]; and the SPHERE-Calorie dataset containing RGB-D images,
and the data from two accelerometers, together with ground truth
calorie values from a calorimeter for calorie expenditure estimation
in home environments [31].
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Figure 2: SPHERE system architecture.

From a data science perspective, given the goals described above
and the technological solution proposed, some of the key questions
for a system to be useful at the most fundamental level are:

(1) Who is in the house?
(2) Where are they?
(3) What are they doing?

If those questions can be answered satisfactorily, then more subtle
questions can be asked, such as:

(1) What is the quality of that activity: are tasks being performed
as they would normally, or is there something unusual?

(2) Is this activity happening more or less frequently than we’d
expect for this individual?

(3) Are patterns of activity changing over time?
(4) Is patient X with condition Y improving/declining at a rate

that is to be expected given the social and medical context?
It stands to reason that in order to answer such questions, the sensor
data will not be sufficient on its own. In order to deliver the greatest
benefits, it is necessary to incorporate contextual information, such
as demographics, medical history, socioeconomic status, and normal
daily life patterns. In practice, incorporating data of this nature with
the streaming sensor data is not a trivial task. Furthermore, such
data is rarely useful in isolation: it is only when examining cohorts
of patients with similar medical conditions and background context
that meaningful patterns appear. While it is unreasonable to expect
that the initial deployments being described herein will solve all of
these problems, the SPHERE project has been designed such that
full studies of this nature can be conducted in the future.

3 STREAM PROCESSING
In streaming data scenarios, such as when dealing withmulti-sensor
systems, dynamic data is generated on a continual basis. Stream pro-
cessing solutions have been receiving increasing interest, a popular
example being Apache Spark™ Streaming2. In parallel, scientific
workflow systems are designed to compose and execute a series
of computational or data manipulation operations [11]. Workflows
simplify the process of sharing and reusing such operations, and
enable practitioners to track the provenance of execution results
and the workflow creation steps. However, workflow managers are
generally designed to work in offline (batch) mode and are not well
suited to the streaming scenario.

When choosing how to create and deploy data analysis pipelines,
due to the specific nature of the deployment, a need for a solution
that had some specific characteristics was identified:

(1) the capability to create complex interlinked workflows
(2) an engine that is designed to be “compute-on-request”
(3) to be capable of storing the history of computation
(4) a plugin system for user extensions
(5) to be able to operate in online and offline mode
(6) to be lightweight, predictable in its use of computing re-

sources, and have minimal requirements
Existing software stacks were considered, such as the Apache
Kafka3 combined with the aforementioned Apache Spark™ Stream-
ing (along with its ML library MLib4). However, such stacks are
generally designed for enterprise servers rather than low-powered
consumer devices, such as the Intel® NUC5 used by the SPHERE
project to ensure low-cost deployments.

Consequently the decision was taken to develop an in-house
solution, HyperStream [16], which differs from other related tool-
boxes in various respects: i) it depends only on a small set of re-
quirements to ease deployment; ii) it focuses on streaming data
sources unlike most workflow engines, and is suitable for limited
resource environments such as found in Internet of Things (IoT)
and Fog computing scenarios [2]; iii) it allows both online and of-
fline computational modes unlike most streaming solutions; iv) it is
distributed under the permissive MIT license, encouraging its use
in both academic and commercial settings. Source code, installation
instructions, tutorials, and documentation are provided online.6

HyperStream performs operations on streams using tools - small
Python classes following a specific interface, and through the use
of channels the author can choose the data of a stream is manifested
(e.g. in a database, memory, file etc). A workflow Application Pro-
gramming Interface (API) is provided, which allows for workflows
to be executed in offline mode or in a continual online fashion,
effectively bridging the functionality of stream processing systems
and workflow engines.

We have taken advantage of the HyperStream plugin system
meaning that SPHERE specific code could be effectively separated
from the main code-base .Additionally, a Python/Flask web-app
was developed called HyperStream-Viewer 7 which allows users

2https://spark.apache.org/streaming/
3https://kafka.apache.org/
4https://spark.apache.org/docs/1.1.0/mllib-guide.html
5https://www.intel.co.uk/content/www/uk/en/products/boards-kits/nuc.html
6https://irc-sphere.github.io/HyperStream/
7https://github.com/IRC-SPHERE/HyperStreamViewer
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of the system to inspect the entirety of the HyperStream back-end
database. Examples will be given in Section 6.

4 DEPLOYMENT CHALLENGES
The SPHERE system is designed to be deployed into participants’
homes. For this reason, we had to impose certain restrictions on the
system in order to be accepted by the general public. This accept-
ability has been addressed through a concerted research avenue of
User-Centred Design (UCD) [4–7]. A key deliverable of this was a
set of rules that need to be adhered to. i) the importance of good
communication through a shared language with the participants
[5]; ii) the system needs to foster comfort in the participants daily
lives [6]; iii) ensure a level of data privacy and anonymisation for the
participants’ comfort; iv) the systemmust be robust and dependable
in order to minimise the interaction with the participants.

In order to ensure the aforementioned points we had to adapt
every technological aspect to the participants’ needs; in some cases
involving the design and creation of our own unobtrusive tech-
nology such as wireless environmental sensors with a battery au-
tonomy of one year [17]. Other more intrusive sensors, such as
the cameras, have been limited to only detect the boundaries of
people (bounding boxes), and within these regions extract standard
computer vision features and perform background subtraction to
create silhouettes (stored as binary bit masks). To further foster
the comfort of the participants, all the data is stored physically in
the participants’ household and only periodic summaries are sent
to the project headquarters. Furthermore, participants are able to
stop the recording or delete previously recorded data by means
of a software interface in a tablet that is provided as part of the
deployment. With respect to to privacy concerns, all transferred
data is initiated by the SPHERE deployments (i.e. all transactions
are pull-only). Furthermore, all communication takes place within
a Virtual Private Network (VPN) over a cellular network.

As mentioned, key non-functional requirements of relevance to
participants include rapid, straightforward installation and mainte-
nance. The installation process is done by two house visits:

A: measure room sizes and wireless signal transmission; ensure
that participants are aware of every detail of the project;
acquire participant consent.

B: complete installation and calibration of the system.
One of the calibration procedures consists of annotating all the
rooms and corners while wearing the participants’ wrist bands and
recording all the data in order to train a room-level localisation
model (this will be described in more detail in Section 5.2). After
the model has been trained, various performance metrics are used
to validate the data collection, and the model is deployed in order
to perform quasi-real time location predictions (an example of
predictions is shown in Figure 3). After these two visits, there is
no need of interruption for the following 3 months when data is
manually collected (visit D).

Given the need to minimise disruption of participants’ daily
lives, the ability to perform ‘self-healing’ – automated recovery
from certain types of fault – is essential. Various mechanisms have
been put in place for the different software components, including
automated restarts and timeouts and process monitoring. Addition-
ally, a diagnostic process periodically sends quasi-real time data

summaries and device status reports in order to act promptly to
avoid any data losses, which (in rare cases) can if necessary be
solved with a visit C.

A positive indication of the participants’ comfort is their interest
in providing additional feedback to the team, asking proactively to
participate in the generation and collection of additional data to
detect activities or provide annotations that are especially valuable
to the ML researchers involved with the project. A team within
SPHERE is in fact dedicated to engage the participants in such
activities and to maximise the benefit of these activities .

Finally, due to the large number of deployments for a project of
this kind, scalability is a significant concern; therefore, the central
data hub on which the project depends is deployed on a private
cloud provided by the University. Furthermore, the quasi-real time
analysis of the collected data and sensor status is monitored in
order to solve any possible issue minimising data losses.

5 MACHINE LEARNING IN THEWILD
Perhaps the most challenging part of developing and deploying
a system such as described here is how to train and deploy pre-
dictive Machine Learning models effectively. Often ML research
has focused on the (rarely realistic) scenario that there is a gold-
standard set of labelled training data which is representative of the
deployment scenario, and there are simple forms of noise. Naturally,
the SPHERE setting presents many sources of uncertainty. Firstly,
we are dealing with multiple sensor modalities (environmental,
body-worn, video), each of which will have different noise profiles
and failure modes. Secondly, we are dealing with a situation where
annotated or labelled data is expensive and intrusive to acquire, and
the resulting labels are potentially noisy and inaccurate – indeed in
some cases, there may be no “ground truth” in the classical sense.
Lastly, patterns of human behaviour are subject to many factors
(internal and external) that may or may not be attributed to the
particular health context of a given individual. In the following
sections, we will cover firstly the details of the construction of
predictive models within the SPHERE system, with emphasis on
the collection of annotated ground truth (Section 5.2), followed in
Section 5.3 by a discussion of issues surrounding the deployment
of trained models.

5.1 Annotation Collection
As a fundamental step towards intelligent healthcare, activity recog-
nition and indoor localisation lie at the core of the ML component
within the SPHERE system. However, as described in the previous
section, ground truth for activities and locations are particularly
hard to obtain in a smart home environment [36]. The difficulties
can be seen from two perspectives. First, precise activities and lo-
cations need to be reported by the users themselves, which is not
practical in a real-life scenario. Second, the environment can vary
widely among different houses (e.g. layout, sensor setup, number
of residents), which further makes the transfer of knowledge (e.g.
in the form of annotations) a difficult task.

As a result, in the SPHERE project, we adopt a range of ap-
proaches to obtain the ground truth to train the models for activity
recognition and indoor localisation. These approaches include both
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data collection within a controlled environment and during the
deployments within real homes.

The first approach adopted was to collect data within a controlled
environment. At the early stage of the project, a house was procured
and instrumented with the SPHERE sensor system for the purposes
of research and development. This house, known as the SPHERE
house (shown in Figure 1), hence became one of the major venues
for early data collection.

To collect detailed activities, a number of scripted experiments
were performed. Volunteers were asked to perform Activities of
Daily Living following a script which gives instructions to the par-
ticipant regarding which room to go to and what to do. The partici-
pants had to follow the instructions in a particular order but could
choose their own pace. They were asked to wear a head-mounted
camera, and the videos were later used to carefully annotate all
activities and ambulation, such as brushing teeth, walking, transi-
tioning from standing to sitting, etc.

Data from the scripted experiments were used to set up a public
machine learning competition called the “SPHERE Challenge” [33],
the goal of which was to recognise a person’s ambulation and pos-
ture from the sensor data within the scripted experiments. The chal-
lenge was hosted by drivendata.org and presented at ECML-PKDD
20168. The evaluation measure was chosen to favour solutions that
not only predict an activity but also quantify their uncertainty about
the prediction. Usually represented as probabilities, information
about uncertainty becomes crucial when humans use predictive
models as input for decision-making purposes.

Despite covering a wide range of activities, the scripted experi-
ments cannot cover all aspects of daily living in their natural succes-
sion. Therefore, longer-term experiments were performed with a
volunteer living in the SPHERE house over a period ranging from a
few days up to a full month in one case. Collecting ground truth by
manually annotating the video recorded by a head-mounted camera
becomes unfeasible for such long-term experiments, due to the ex-
cessive effort on annotating the video as well as due to discomfort
and invasion of privacy from wearing the camera. Therefore, the
participant was instead asked to use a smartphone (or watch) to
select the current activity using a dedicated annotation app.

While data collection in the SPHERE house gives detailed annota-
tions for initial investigation and model training, the requirement of
annotations for each deployment still exists to personalise the mod-
els for each house. Therefore, the second approach adopted was to
design a scripted experiment to be performed within each deployed
house. In contrast to the controlled environment of the SPHERE
house, in real deployments we aim to capture daily-life related ac-
tivities rather than precise positions and movements. Therefore,
the script we use in the deployments is to reproduce a daily rou-
tine for each household, known as the “day in fast-forward” script.
As in the previous scripted experiment, the participants are also
required to wear a head-mounted camera, and the resulted videos
are annotated after the deployment.

8http://www.irc-sphere.ac.uk/sphere-challenge/home

5.2 Predictive Model Training
As has been described previously in Section 2, one of the first steps
to capturing the behaviour of residents in the house is to ascertain
their location. Here we will make the following assumptions:

• When the resident is in the house, they wear their wearable.
• The residents always wear their own wearable.
• The position of the residents can be determined by the
strength of the wearable signal at the different access points.

All of these assumptions may be invalidated in reality, but they give
a starting point for training a ML model for localisation prediction.
In addition, errors in the predictions arising from violations of these
assumptions can possibly be mitigated in post-processing.

While activity recognition models can be to some extent be
transferred across houses, the localisation model needs to be trained
in each house individually. For this purpose, each deployment at
a new house includes a short annotation procedure, where the
deployment technician visits all the rooms of the house carrying the
wearable accelerometer sensors and records the moments of being
at each corner of the room using a smartphone application. The
received signal strengths recorded by the SPHERE system and the
annotations are then ready for training a localisation model which
is to be used in this particular house for localising all residents.

Once the walk-around experiments have been completed the
technician interacts with the SPHERE HyperStream system to
launch the localisation model training and deployment workflow.
The first part of the model deployment workflow searches for com-
pleted technician walk-around scripts in the database9. The techni-
cian is then presented with a list of these along with time-stamps
and durations, and asked to select two. These two walk-around
scripts will then be used in two-fold cross-validation (i.e. train on
one, test on the other, and vice-versa). This proceeds as follows:

(1) Data windowing: the time-stamps from the scripts are then
used to generate windows for the sensor data and annota-
tions, as provided by the annotation app.

(2) Data ingress: the raw RSS values are pulled in from the
SPHERE MongoDB and extracted along with the raw an-
notations for these time windows. These are collected into
pandas data frames.

(3) Feature extraction: these are bucketed into non-overlapping
two-second windows: in the case of the RSS, the maximum
value is taken over this time window; in the case of the
annotations, the one with the greatest duration is taken.

(4) Merging: these are merged to produce input and output
examples for the classifier(s). Predictions will be generated
for each 2s window.

(5) Classifier training: The specific classification models for
localisation prediction are described below. Here a Hyper-
Stream tool was developed that allowed various classifiers
to be used simply by changing a parameter value. The de-
ployed model, in this case, is a Logistic Regression model
using scikit-learn [24], chosen for its interpretability, sim-
plicity, and ability to produce well-calibrated probabilistic
outputs.

9All scripts and the SPHERE-specific plugin can be found at https://github.com/
IRC-SPHERE/Sphere-HyperStream

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

247

drivendata.org
http://www.irc-sphere.ac.uk/sphere-challenge/home
https://github.com/IRC-SPHERE/Sphere-HyperStream
https://github.com/IRC-SPHERE/Sphere-HyperStream


Figure 3: Localisation predictions made by HyperStream in one household for one participant

(6) Evaluation: The script that the technician is presented with
then outputs variousmetrics for the two-fold cross-validation,
including accuracy, Brier score, F-measure, and a confusion
matrix. If the models are deemed to be satisfactorily per-
formant, the technician can then accept the model; if not,
another data-collection walk-around is required.

(7) Deployment: When a model is accepted, another Hyper-
Stream workflow is executed that stores all of these metrics
to the database and deploys the model. This is physically
manifested in another stream, meaning that it can be over-
written by further executions of the technician’s script.

There are a few points of note here. Firstly, although the current
ML model is a relatively straightforward implementation using a
standard toolbox, HyperStream allows users to use any arbitrary
model (either written in Python, or using a Python wrapper). In
particular, we have implemented models using the Bayesian infer-
ence toolbox Infer.NET produced byMicrosoft® Research [22], such
as the probabilistic sensor fusion model described in [15], and the
Bayesian Dictionary Learning model applied to the accelerometer
data, and described in [14]. Secondly, we should note here that in
this paradigm, there is an individually trained predictive model
operating in each of the households. Whilst we have investigated
the possibility of having models that can be transferred between
houses [13], the complexity of such approaches precludes them
from the initial deployments for the time being, although they may
be used in future. Finally, although not yet implemented, there are
two options for acting on decisions made by the classification algo-
rithms in (near) real-time: (i) messages can be sent to what is known
as the “SPHERE Genie”, a app that is running continually on an
Android™ tablet that is provided to each SPHERE household 10 (ii)
messages can be sent directly back to the headquarters11 bypassing
the summarisation system described in Section 5.3 below.

5.3 Predictive Model Deployment
Once the localisation model has been trained, HyperStream keeps
the localisation workflow running constantly, recording the predic-
tions into theHyperStreamMongoDB instance and thus providing

10See a demonstration of the Genie at https://youtu.be/G4dWxPrOE-Q
11i.e. currently the University of Bristol, but ultimately to clinicians

the SPHERE system with residents’ locations. An example of the
localisation predictions can be seen in Figure 3.

Currently, the localisation model uses only the BLE RSS as input.
In principle, the location predictions could be made more accurate
when using additional information from the PIR sensors and cam-
eras. HyperStream has been developed in a way which supports a
simple deployment of updates to its tools and workflows without
requiring a major software update. In fact, all that is needed is for
a new HyperStream workflow to be serialised and inserted into
the database, which can be performed on-the-fly.

With a huge number of deployed sensors and other devices across
a large number of houses, it is inevitable that faults occur. Due to
almost completely uni-directional communication, it is crucial that
the deployed SPHERE system itself would report enough diagnos-
tic information, so that faults could be diagnosed in the SPHERE
headquarters and maintenance visits arranged accordingly. For this
purpose HyperStream is running a data summarisation workflow
on a regular basis. The workflow collects all information recorded
from all sensors and calculates hourly and 3-hourly aggregates for
each sensor, including the average reported values as well as the
number of recorded packets. Additionally, similar summaries are
produced from the localisation predictions. All the created sum-
maries are communicated once per day to the SPHERE headquarters
for diagnostic purposes.

The diagnosis can be made according to specific prior knowl-
edge on these summaries. For instance, if the summaries show the
predicted location from a wearable hasn’t been changed for several
days, then the researchers can infer that the wearable has been
dropped somewhere. Similarly, if the summaries from a particular
sensor show some abnormal pattern, such as the temperature sensor
has been reporting a constant value, further investigation can also
be initiated to check whether there is a failure on the corresponding
sensor.

5.4 Unsupervised Approaches
Thus far we have focused on predictive machine learning. However,
given the difficulty with gathering labelled data, our research group
have also conducted promising research on the use of unsuper-
vised learning and data mining approaches in this context. We have
explored methods to replace or augment supervised training of
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activity recognition models through the discovery of patterns of
activities using topic models [9], and similarly for indoor localisa-
tion models, by automatically inferring the layout of the home [32].
Further, given inferred activity labels, we have investigated the
temporal nature of activities using circular statistics, and in partic-
ular by performing Bayesian inference with circular distributions
[12]. Regarding data mining, we have also investigated approaches
directly using the sensor data to detect potential behaviour changes
of the households, without explicitly predicting variables like activi-
ties and locations. In [28] we proposed a method to find statistically
abnormal subgroups by summarising different probabilistic models,
and later in [27] we further demonstrated the proposed approach
can be adopted to find abnormal spatio-temporal patterns from
long-term sensor data within a home.

6 POST-HOC ANALYSIS
When the daily summaries about sensor readings and localisation
predictions come down from all the houses, another summarisation
workflow HyperStream is launched in the SPHERE lab. This pro-
duces meta-summaries (summaries of summaries) about the state
of all sensors within all houses, making it easier to get an overview
of all deployments and the faults that occurred, if any.

HyperStream-Viewer is a companion web application, built
with Python Flask using HighCharts12 for charting, which is used
to search and visualise summaries and meta-summaries returned
from deployed HyperStream instances. Summaries are available
per home and per device and can be searched for keywords. Figure
4 shows the HyperStream-Viewer summary search interface.

Individual summaries can be displayed in JSON, tabular or graph-
ical display modes. Figure 5 shows a close-up screen-shot of room
temperature over a selected time period.

Case study: labelling participant data with
post-hoc analysis of video and location data
The SPHERE datasets, consisting of raw time-stamped sensory data
and HyperStream’s in-situ aggregate statistics and classifications,
provide a rich source of information about the domestic environ-
ment and behaviour of inhabitants. Attributing visual behavioural
information to specific participants in homes of multiple occupancy
is one example of the post-hoc analyses made possible by combining
sensor data and classification streams.

Re-identification (Re-ID) is the task of recognising a person that
has already been observed [26]. In applications such as CCTV mon-
itoring, this allows an unknown individual to be tracked across
multiple scenes and cameras by matching a given target represen-
tation to previously observed representations. Re-ID for SPHERE
must also correctly attribute a true identity label to clusters of un-
labelled Re-ID features. Doing so allows for alignment between
visual information, captured from cameras, and other sensory data
such as the wrist-worn accelerometer, environmental sensors or
device-attached smart meters on an individual level.

As described in Section 5, HyperStream uses wrist-wearable
RSS indication to classify the room-level location of each partici-
pant. Location predictions are made at regular short intervals for

12https://www.highcharts.com/

each participant in range of the network. Elsewhere in the sen-
sor network, Re-ID features are extracted from people present in
view of cameras deployed within the home. By temporally aligning
Re-ID features for each camera with location predictions for each
participant, it is possible to identify when a known participant was
located in view of a camera at the same time a Re-ID feature was
generated. Using this approach, it is possible to propagate labels
within clusters of Re-ID features.

A sample set of data was gathered from a single multi-occupancy
home during the visit B ‘day in fast forward’ activity. Six instances
were found in which location prediction, Re-ID feature and times-
tamp overlapped and where only a single participant was in view
of the camera at the time. By propagating the participant wearable
label across the video tracklets (see [25]) it is possible to assign
ground truth to a further 714 unlabelled Re-ID features. Figure 6
shows two participant Re-ID clusters, coloured to indicate their
respective propagated ground-truth participant label.

7 DEPLOYMENT MONITORING
Each deployed home sends status reporting information for each
sensor in its network. The system architecture of each SPHERE
deployment involves both Internet of Things (IoT) and control sys-
tems; hence, the monitoring network itself is multi-layered to allow
technology stacks to coexist. This also has the corresponding benefit
that, should a key software component fail in one stack, the other
stacks, which operate in parallel, will continue to report. Three
monitoring channels are returned: MQTT data, typically contain-
ing event-driven reports; system monitoring data is returned using
the Nagios13 NRDP (XML-based) interface; finally, ‘deep-packet
inspection’ level summaries of sensor performance are returned
through the HyperStream database.

An indicative subset of this information is returned through
Nagios, an infrastructure monitoring tool. Information from Na-
gios is visualised in a web application built on the application’s
JSON API and historical data stored through the NDO2DB data
storage interface, allowing for easy appraisal of sensor status and
performance. Figure 7 shows a screen-shot of sensor network visual-
isation. Installation identifiers have been removed. The integration
of these distinct monitoring sources into a coherent image of system
health is non-trivial. Diagnostics are addressed through a rule-based
approach, which allows for problem classes and hence potential
solutions to be identified.

8 DISCUSSION
The SPHERE project has been an ambitious attempt to take a re-
search project into the wild. From a data science perspective, on the
whole this has been a successful exercise: it has been demonstrated
that, starting more or less from scratch, it is possible to construct
a sensor system that is robust, enables the storage and transmis-
sion of data, and produces insights from that data from in-situ ML
models. There do, however, remain open questions.

As a research project, taking place under the auspices of a large-
scale University-led research programme, the SPHERE deployed
system had to serve two simultaneous functions. On the one hand
it had to be a “real” test of deploying an Ambient Assisted Living
13https://www.nagios.org/
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Figure 4: HyperStream-Viewer with table of summaries beginning with search term showing aggregates of percentiles of
environmental sensors in the kitchens of all of the houses.
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Figure 5: Interactive summary of the temperature for a pe-
riod of one week in a room of a household.

system, meaning that, for example, researchers had no access to
the homes (whether physically, electronically, or otherwise), apart
from specific agreed visits. On the other hand, it was deemed to
be of great importance that the full collated dataset from all of
the homes could be made available in full to researchers from the
project and in some form to other researchers. In true deployment
settings, this second need would disappear, and only a minimal
amount of diagnostic and summary data would need to leave the
homes for the lifetime of its operation. This has led to somewhat
complicated procedures for recovering data, including manually

Figure 6: Isomap clustering of label-propagated participant
Re-ID features

replacing hard-drives at fixed intervals, that would not otherwise
have occurred. In this sense, one might consider that the SPHERE
system is not yet truly deployment-ready.

Secondly, the project has not yet got to the point where it can be
demonstrated whether the data science and ML pipeline is capable
of conferring the health benefits that it set out to. This is in part due
to a fundamental design choice: when building a system such as this,
one can choose to build a general-purpose platform that can tackle
many health-care issues, or one can focus on specific issues from the
start. Recognising its greater potential for impact, SPHERE chose
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Figure 7: Screen-shot of sensor network status visualisa-
tion. Each big circle corresponds to a household while each
smaller circle symbolises the status of a device or service.
Abnormal behaviours are symbolised with the red colour.

to take the former route, but this means that true validation from
a medical perspective is still ongoing. There are now two projects
that are building technologies developed in SPHERE. The first is
the “HEmiSPHERE” project14 funded as part of SPHERE, examining
post-operative hip/knee surgery. The second is an Medical Research
Council (MRC) funded project “CUBOId” aimed at applying the
technologies developed in SPHERE to dementia patients, aiming to
detect the first subtle signs of this life-changing condition in order
to develop new treatments that target the disease before it causes
irreversible changes to the brain.15

Other projects are likely to follow – for example, discussions
are ongoing about the possibilities of employing a SPHERE-like
system for monitoring animal health and welfare in farms. It is also
worth noting that SPHERE has been evaluated positively by the
research council and awarded follow-on funding to become a self-
sustaining centre of excellence in sensing systems for twenty-first
century healthcare16. From an applied data science perspective the
journey so far has been utterly fascinating and worthwhile, as the
interplay between powerful methods and challenging applications
has resulted both in practical solutions and in new theory and
algorithms in areas where practical solutions did not yet exist.

We close with the following points of note for practitioners:

14http://www.irc-sphere.ac.uk/hemisphere
15See http://www.bristol.ac.uk/news/2016/october/sphere-mrc-award.html
16https://www.epsrc.ac.uk/newsevents/news/healthcareresearchcentres/

(1) Houses need to be measured carefully for both commu-
nication and localisation.

(2) User-Centred Design is critical to gaining user accep-
tance.

(3) Real-time data transfer is not practical for such a sens-
ing system, so the overall system must be designed
accordingly.

(4) As a result, a data summary pipeline is required for
diagnosis and monitoring purposes.

(5) Fault-tolerant software is required to mitigate potential
issues after detecting any anomalies.

(6) We have developed a set of software tools, based around
the stream processing engine HyperStream.

(7) Detailed and clean ground truth is particularly hard to
obtain. Solutions include:

(a) Establish a controlled environment for repeated ex-
periments.

(b) Design short scripts that can be carried out during
the deployment process.
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