
Journal of Machine Learning Research 1 (2019) 1-48 Submitted 8/19; Published 10/00

HyperStream: a Workflow Engine for Streaming Data

Tom Diethe tdiethe@amazon.com
Amazon, Cambridge, CB1 2GA, UK

Meelis Kull meelis.kull@ut.ee
University of Tartu, 50090 Tartu, Estonia

Niall Twomey niall.twomey@bristol.ac.uk
Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK

Kacper Sokol k.sokol@bristol.ac.uk
Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK

Hao Song hao.song@bristol.ac.uk
Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK

Miquel Perelló-Nieto mp15688@bristol.ac.uk
Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK

Emma Tonkin emma.tonkin@bristol.ac.uk
Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK

Peter Flach peter.flach@bristol.ac.uk

Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK

Editor: A. N. Other

Abstract

This paper describes HyperStream, a large-scale, flexible and robust software package,
written in the Python language, for processing streaming data with workflow creation
capabilities. HyperStream overcomes the limitations of other computational engines and
provides high-level interfaces to execute complex nesting, fusion, and prediction both in
online and offline forms in streaming environments. HyperStream is a general purpose
tool that is well-suited for the design, development, and deployment of Machine Learning
algorithms and predictive models in a wide space of sequential predictive problems.

Source code, installation instructions, examples, and documentation can be found at:
https://github.com/IRC-SPHERE/HyperStream.

Keywords: Stream Processing, Workflow Engine, Compute Engine, Streaming Data

1. Introduction

Scientific workflow systems are designed to compose and execute a series of computational
or data manipulation operations (workflow) (Deelman et al., 2009). Workflows simplify the
process of sharing and reusing such operations, and enable scientists to track the provenance
of execution results and the workflow creation steps. Generally workflow managers are
designed to work in offline (batch) mode. Well known examples are Kepler1 and Taverna2.

1. https://kepler-project.org/
2. https://taverna.incubator.apache.org/

c©2019 Tom Diethe, Meelis Kull, Niall Twomey, Kacper Sokol, Hao Song, Miquel Perelló-Nieto, Emma Tonkin, and
Peter Flach .

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v1/diethe19a.html.

ar
X

iv
:1

90
8.

02
85

8v
1 

 [
cs

.L
G

] 
 7

 A
ug

 2
01

9

https://github.com/IRC-SPHERE/HyperStream
https://kepler-project.org/
https://taverna.incubator.apache.org/
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/diethe19a.html


Diethe et. al.

In streaming data scenarios, common to most industry segments and big data use cases,
dynamic data is generated on a continual basis. Stream processing solutions have been
receiving increasing interest (Garofalakis et al., 2016), popular examples including Apache
SparkTM Streaming3 and Microsoft R© Azure Stream Analytics4.

HyperStream harnesses the rich environment provided by the Python language to
provide both stream processing and workflow engine capabilities, while maintaining an
easy-to-use Application Programming Interface (API). This answers a growing need for
scientific streaming data analysis in both academic and industrial data intensive research,
as well as in fields outside of core computer science, such as healthcare and smart envi-
ronments. HyperStream differs from other related toolboxes in various respects: i) it is
distributed under the permissive MIT license, encouraging its use in both academic and
commercial settings; ii) it depends only on a small set of requirements to ease deployment;
iii) it focuses on streaming data sources unlike most workflow engines; is suitable for limited
resource environments such as found in Internet of Things (IoT) and Fog computing sce-
narios (Bonomi et al., 2012); and iv) it allows both online and offline computational modes
unlike most streaming solutions.

2. Features

This software has been designed from the outset to be domain-independent, in order to
provide maximum value to the wider community. Source code, issue tracking, installation
instructions, examples, and documentation can be found on GitHub5, as well as a discussion
room6. HyperStream is currently supported with Python 2.7 and 3.6 on *ix platforms
(e.g. linux, OS-X) and Microsoft Windows. For ease of installation, Docker containers are
provided. HyperStream also makes use of continuous integration using Travis-CI.

The core requirements for HyperStream are summarised as follows:

1. the capability to create complex interlinked workflows
2. a computational engine that is designed to be “compute-on-request”
3. to be capable of storing the history of computation
4. a plugin system for user extensions
5. to be able to operate in online and offline mode
6. to be lightweight and have minimal requirements

(2) and (3) reduce unnecessary repeated computation, and enable full data pipeline prove-
nance. One of the main motivating factors for (6) was that computations should be capable
of being performed on minimal hardware, such as found in IoT settings (see Section 4.1
below).

3. Design

HyperStream is written in Python, and uses MongoDB for the back-end. This means
that all system configuration and persistence is in MongoDB, although this does not mean

3. http://spark.apache.org/streaming/
4. https://azure.microsoft.com/en-us/services/stream-analytics/
5. https://github.com/IRC-SPHERE/HyperStream
6. https://gitter.im/IRC-SPHERE-HyperStream

2

https://www.docker.com
https://travis-ci.org/IRC-SPHERE/HyperStream
http://spark.apache.org/streaming/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://github.com/IRC-SPHERE/HyperStream
https://gitter.im/IRC-SPHERE-HyperStream


HyperStream: a Workflow Engine for Streaming Data

that HyperStream is limited to MongoDB for stream storage (see below). The system
consists of two layers: the stream layer and the workflow layer, as described below.

3.1 Stream Layer

At the stream layer there exist only streams and tools. Tools operate on streams to produce
new streams, hence creating a chain of operation. A simple example of this can be seen in
Figure 17. Here the data originates from a comma-separated value file, is imported using
the csv import tool into the sea ice memory stream, and then processed by the sum list
tool into a database stream called sea ice sum.

csv sea ice sea ice sum
csv import sum list

Figure 1: Example chain of computations. The filled (grey) node indicates that the
sea ice sum stream is stored in the database rather than memory.

We treat all data as streams of documents, where a document can contain most Python
object types, as long as they can be converted to Binary JavaScript Object Notation
(BSON).

Tools are the computation elements, with fixed parameters and filters defined that can
reduce the amount of data that needs to be read from the database. They take input data
in a standard format (an iterator over stream documents) and output data via a generator
in the same standard format. Tools are agnostic to where the data actually lives (i.e.
memory/files/database).

Channels define the manifestation of streams for time ranges that have been computed,
along with any specific processing required to read and write the streams, which abstracts
away the specifics of interacting with different data sources. The built-in channels are the
memory, database (MongoDB), file, assets, (Python) module, and tool channels. The tool
channel is a subclass of the module channel, which in turn is a subclass of the file channel,
which means that the tools themselves are stored in streams. The HyperStream plugin
system allows users to define their own channels, in order to work with custom databases,
file-based storage with custom formats or locations, or to modify the default capabilities
of existing channels. An example machine learning plugin can be found at 8. This wraps
Scikit-learn (Pedregosa et al., 2011) linear models into a HyperStream plugin, and provides
examples for how this would be used for online learning and anomaly detection, and can
for example be extended to the continual learning setting (Diethe et al., 2019).

3.2 Workflow Layer

Taking inspiration from factor graph notation for probabilistic graphical models (Buntine,
1994), workflows define a graph of “nodes” connected by “factors”, which can be surrounded
by “plates”. Workflows can have multiple time ranges, which will cause the streams con-
tained in the nodes to be computed on all of the ranges given. Workflows can be defined

7. https://github.com/IRC-SPHERE/HyperStream/blob/master/examples/tutorial_03.ipynb
8. https://github.com/IRC-SPHERE/HyperStreamOnlineLearning

3

https://github.com/IRC-SPHERE/HyperStream/blob/master/examples/tutorial_03.ipynb
https://github.com/IRC-SPHERE/HyperStreamOnlineLearning


Diethe et. al.

to be operable in offline-only mode, or also available to the HyperStream online engine,
which will cause the workflow to be executed continuously. Workflows are serialised to
MongoDB by HyperStream for ease of deployment.

3.2.1 Plates

Plates can be thought of as a “for loop” over parts of the computational graph contained
within them. This is conceptually similar to the notion of plates in factor graphs. Both
nodes and factors can be contained inside a plate.

An example is given below, where we construct an outer plate ‘C’ that loops over
continents, and then an inner plate that loops over countries within each continent:

1 countries_dict = {

2 ’Asia’: [’Bangkok ’, ’HongKong ’, ’KualaLumpur ’, ’NewDelhi ’, ’Tokyo ’],

3 ’Australia ’: [’Brisbane ’, ’Canberra ’, ’GoldCoast ’, ’Melbourne ’, ’Sydney

’],

4 ’NZ’: [’Auckland ’, ’Christchurch ’, ’Dunedin ’, ’Hamilton ’,’Wellington ’],

5 ’USA’: [’Chicago ’, ’Houston ’, ’LosAngeles ’, ’NY’, ’Seattle ’]

6 }

7

8 # delete_plate requires the deletion to be first childs and then parents

9 for plate_id in [’C.C’, ’C’]:

10 if plate_id in [plate [0] for plate in hs.plate_manager.plates.items ()]:

11 hs.plate_manager.delete_plate(plate_id=plate_id , delete_meta_data=

True)

12

13 for country in countries_dict:

14 id_country = ’country_ ’ + country

15 if not hs.plate_manager.meta_data_manager.contains(identifier=id_country

):

16 hs.plate_manager.meta_data_manager.insert(

17 parent=’root’, data=country , tag=’country ’, identifier=

id_country)

18 for city in countries_dict[country ]:

19 id_city = id_country + ’.’ + ’city_’ + city

20 if not hs.plate_manager.meta_data_manager.contains(identifier=

id_city):

21 hs.plate_manager.meta_data_manager.insert(

22 parent=id_country , data=city , tag=’city’, identifier=id_city

)

23

24 C = hs.plate_manager.create_plate(plate_id="C", description="Countries",

values =[], complement=True ,

25 parent_plate=None , meta_data_id="country")

26 CC = hs.plate_manager.create_plate(plate_id="C.C", description="Cities",

values =[], complement=True ,

27 parent_plate="C", meta_data_id="city")

3.2.2 Nodes

A node is a collection of streams that live on the same plate, i.e. they have shared meta-data
keys, and are connected in the computational graph by factors.

4



HyperStream: a Workflow Engine for Streaming Data

3.2.3 Factors

Factors are the workflow implementations of tools. A factor defines the element of com-
putation: the tool along with the source and sink nodes. Basic factors will take input
streams on (a) given plate(s), execute the tool on these streams, and output a stream that
is one same plate(s). Multi-output factors are able to take streams from a plate and output
streams on a sub-plate of that plate (e.g. by splitting).

Usually, the first factor in a workflow will be a special “raw” factor that uses a tool with
no input streams that pulls in data from a custom data source outside of HyperStream.

4. Domain Specific Languages

HyperStream workkflows are defined in terms of a Domain Specific Language (DSL).

4.1 Case Study: The SPHERE Project

The Sensor Platform for HEalthcare in a Residential Environment (SPHERE) project (Zhu
et al., 2015; Woznowski et al., 2017; Diethe et al., 2018) uses multiple heterogeneous sensors
for the purpose of health monitoring within the home environment. Part of the project
involves the deployment of sensor systems to the homes of up to 100 volunteer families
within the Bristol area of the UK. Each house has a limited computational budget due to
the inconvenience of off-site hardware installation. In this setting a HyperStream instance
runs in each house in online mode on an Intel R© NUC, a 4 × 4 inch mini PC, alongside
other services such as MongoDB, Apache ActiveMQTM, and Apache HTTP ServerTM.
Here HyperStream is used to provide pseudo-real-time predictions using trained Machine
Learning models and to perform online processing and summarising of the sensor data.
In addition, when data is retrieved from the houses, computations are performed on a
centralised database to perform aggregate computations and further “meta-summaries”.
The SPHERE project has made heavy use of the workflow capabilities and the plugin
architecture of HyperStream.

Figure 2 depicts an example workflow for prediction of sleep, showing nested plates,
nodes and factors. Here the raw data comes from the SPHERE deployment houses, which
are on the H plate. The wearable data is then split by its unique identifier (since there is
more than one wearable per house) onto the W plate, which is nested inside the H plate.
Two sliding apply tools are then executed for each wearable in each house with differing
length sliding windows (5s and 300s) to first compute windowed arm angles and then a
windowed inactivity estimate, which is stored in the database channel and subsequently
used as part of a sleep prediction algorithm.

5. Concluding remarks

We have presented HyperStream, a software package for processing streaming data with
workflow creation capabilities, with a flexible plugin architecture. HyperStream is in
active development, and contributions are actively welcomed (see https://github.com/

IRC-SPHERE/HyperStream/wiki/How-to-contribute). Moreover, we would like to ac-

5

https://github.com/IRC-SPHERE/HyperStream/wiki/How-to-contribute
https://github.com/IRC-SPHERE/HyperStream/wiki/How-to-contribute


Diethe et. al.

raw data wearable wearable xl arm angle inactivity

window 5 window 300

sphere component

sliding apply sliding apply
W

H

Figure 2: Example workflow.

knowledge all HyperStream contributors, who can be identified using the git log com-
mand.

The SPHERE Interdisciplinary Research Collaboration (IRC) is funded by the UK
Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/K031910/1.

References

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in
the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud
computing, pages 13–16. ACM, 2012.

Wray L Buntine. Operations for learning with graphical models. Journal of artificial intelligence
research, 1994.

Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Workflows and e-science: An
overview of workflow system features and capabilities. Future generation computer systems, 25
(5):528–540, 2009.

Tom Diethe, Mike Holmes, Meelis Kull, Miquel Perello Nieto, Kacper Sokol, Hao Song, Emma
Tonkin, Niall Twomey, and Peter Flach. Releasing eHealth analytics into the wild: Lessons learnt
from the SPHERE project. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’18, pages 243–252, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.3219883. URL http://doi.acm.org/10.

1145/3219819.3219883.

Tom Diethe, Tom Borchert, Eno Thereska, Borja de Balle Pigem, and Neil Lawrence. Continual
learning in practice. arXiv preprint arXiv:1903.05202, 2019.

Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Management: Processing
High-Speed Data Streams. Springer, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Przemyslaw Woznowski, Alison Burrows, Tom Diethe, Xenofon Fafoutis, Jake Hall, Sion Hannuna,
Massimo Camplani, Niall Twomey, Michal Kozlowski, Bo Tan, Ni Zhu, Atis Elsts, Antonis Vafeas,
Adeline Paiement, Lili Tao, Majid Mirmehdi, Tilo Burghardt, Dima Damen, Peter Flach, Robert
Piechocki, Ian Craddock, and George Oikonomou. SPHERE: A sensor platform for healthcare in a
residential environment. In Designing, Developing, and Facilitating Smart Cities, pages 315–333.
Springer International Publishing, Cham, 2017.

6

http://doi.acm.org/10.1145/3219819.3219883
http://doi.acm.org/10.1145/3219819.3219883


HyperStream: a Workflow Engine for Streaming Data

Ni Zhu, Tom Diethe, Massimo Camplani, Lili Tao, Alison Burrows, Niall Twomey, Dritan Kaleshi,
Majid Mirmehdi, Peter Flach, and Ian Craddock. Bridging e-health and the internet of things:
The SPHERE project. Intelligent Systems, IEEE, 30(4):39–46, 2015.

7


	1 Introduction
	2 Features
	3 Design
	3.1 Stream Layer
	3.2 Workflow Layer
	3.2.1 Plates
	3.2.2 Nodes
	3.2.3 Factors


	4 Domain Specific Languages
	4.1 Case Study: The SPHERE Project

	5 Concluding remarks

