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Abstract—In residential environments, floor maps, often re-
quired by location-based services, cannot be trivially acquired.
Researchers have addressed the problem of automatic floor map
construction in indoor environments using various modalities,
such as inertial sensors, Radio Frequency (RF) fingerprinting
and video cameras. Considering that some of these techniques are
unavailable or impractical to implement in residential environ-
ments, in this paper, we focus on using RF signals to predict the
number of walls between a wearable device and an access point.
Using both supervised and unsupervised learning techniques on
two data sets; a system-level data set of Bluetooth packets,
and measurements on the signal attenuation, we construct wall
prediction models that yield up to 91% identification rate. As a
proof-of-concept, we also use the wall prediction models to infer
the floor plan of a smart home deployment in a real residential
environment.

Keywords-Wall prediction model; floor map construction;
wearable systems; bluetooth low energy

I. INTRODUCTION

The ubiquity of smart phones has triggered the development
of various localisation services and location-based applications
(e.g. [1]). Maps are often required by such applications to de-
fine the location in an absolute scale. While Global Positioning
System (GPS) and map providers, such as Google and Mi-
crosoft, have simplified this problem in outdoors environments
(see [2]); acquiring indoor floor plans is a challenging task.
Occasionally, for few important public places, map providers
also provide manually-constructed indoor floor maps.

In the most recent years, the problem of automatic indoor
floor plan construction attracted attention in the research com-
munity with an substantial increase of the related literature.
Such floor plan construction systems leverage various sources
of information; primarily inertial sensors, but also cameras
and Radio Frequency (RF) signals. Simultaneous Localisation
and Mapping (SLAM) is a technique that is inherited from
the robotics community [3] and used for tracking in unknown
environments. SLAM is applied to the problem of indoor
floor plan construction, exploiting the existence of inertial
sensors, such as accelerometers and gyroscopes, in smart
phones [4][5][6][7][8]. The core idea is to perform odometry
to trace the movement of a user in an unknown environment
while updating, in parallel, a map based on visited locations.

Inertial sensors do not provide absolute information. Hence,
indoor floor map construction techniques often fuse other

modalities, such as cameras [8], and RF signals [6], typically
originating from WiFi local area networks. RF fingerprinting is
the state-of-the-art technique for indoor localisation [9]. Upon
the collection of a labelled data set, fingerprinting techniques
identify correlations between locations and radio-signal pat-
terns. In public places, the collection of fingerprints, inertial or
other types of data can be crowed-sourced [2][5][6][8] through
applications in the smart phones of passers-by.

In this paper, we consider the problem of automatic indoor
floor map construction in a residential environment. In the
context of smart residential environments for eHealth applica-
tions, for instance, floor map construction can assist location-
based services that identify anomalies in the residents’ daily
routine [10], assist patients with moving difficulties [11] or
prevent falls [12]. Envisioning the future of smart homes and
the scalable adoption of the Internet of Things (IoT), users
with little technical expertise will be expected to deploy IoT-
enabling plug-and-play technologies. Without experts deploy-
ing the system, the floor map of the environment cannot be
simply assumed by higher layers of the system (i.e. ambient
intelligence algorithms). To make matters worse, users may
potentially deploy their hardware in suboptimal locations.

The vast majority of the related work, assumes a public
indoor environment, such as a university building, a shopping
mall, or an office [4][5][6][8]. In contrast to public spaces, a
residential environment has properties that constrain the appli-
cability of some of the proposed solutions. WiFi fingerprinting,
for instance, requires the collection of labelled fingerprints
and, in the case of a residential environment, is typically
limited to a single WiFi access point. Crowd-sourcing is not an
option. Furthermore, the usefulness of smart phones (used in
[4][5][6][7][8]) is also limited as, unlike public environments,
it cannot be assumed that users will carry them continuously.

Assuming the use of wearable sensors instead of smart
phones, in this paper, we identify and propose an alternative
use of RF signals in the problem of indoor map construc-
tion. Upon a wireless propagation campaign in a residential
environment, we observed that the nature of this environment
(i.e. small rooms, thick walls) gives unique properties to the
signal attenuation. As shown in Section II, most of the sig-
nal attenuation occurs because of propagation through walls,
rather than because of the distance within the same room or
the body shadow. As a result, the Received Signal Strength



Indicator (RSSI) at the receiver contains information about
the number of walls that the signal traversed through. In smart
homes with multiple receivers an RSSI-based wall prediction
model can be used, eventually together with other modalities
(e.g. cameras or inertial sensors), for floor map construction.

In fact, our previous measurement campaigns using the
Sensor Platform for Healthcare in Residential Environments
(SPHERE) infrastructure [13] suggest that a Bluetooth Low
Energy (BLE) wearable sensor requires multiple receiver
units for full-house coverage. Therefore, with regard to the
infrastructure, the integration of an RSSI-based wall prediction
model for floor map construction comes at no additional
overhead. Furthermore, it introduces no overheads to the
energy-constrained wearable sensor.

In addition to indoor floor map construction, which is the
focus of this paper, an RSSI-based wall prediction model can
be potentially used by IoT service providers to identify cases
where the users have deployed access points in sub-optimal
locations (e.g. two access points in the same room). Further-
more, it can give spatial context to other sensing modalities
(e.g. identify whether sensors are deployed in different rooms).

It should be noted that, contrary to related work that uses
inertial sensors, a wall prediction model cannot estimate the
dimensions of the rooms. Instead, it identifies wall relation-
ships between them. Therefore, this work complements the
state-of-the-art with an additional modality. In this paper we
are interested in identifying the potential of the wall prediction
model itself. Thus, the use of our platforms’ accelerometers
is out of our scope and considered future work.

In short, the contribution of this work can be summarised as
follows. First, we identify that in certain types of residential
environments the RSSI contains information on the number of
walls between the transmitter and the receiver. We compare the
accuracy of various learning techniques on building an RSSI-
based wall prediction model, considering both supervised and
unsupervised solutions. We validate the robustness of this
model to the locations of the nodes within the rooms, and
to different platforms, by training it with measurements on
the channel attenuation of different links. Lastly, we apply
the predictions to the case of the SPHERE infrastructure [13]
and evaluate its accuracy on constructing the floor map of the
SPHERE house.

The remainder of the paper is structured as follows. Sec-
tion II provides insight on the signal propagation patterns in a
residential environment and on how they can be leveraged for
determining the number of walls in a link. In Section III, we
use different learning techniques to create models that estimate
the number of walls. Section IV evaluates the performance
of the considered algorithms using both system-level RSSIs
and channel gain measurements. Section V applies the wall
prediction model to the problem of residential floor map
construction. Lastly, Section VI concludes the paper.

II. MOTIVATING EXPERIMENT

In this section, we present results of a measurement cam-
paign in a residential environment, using the SPHERE in-
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Fig. 1. CDFs of the RSSI of all the packets received for 3 links, as measured
by a receiver in the same and adjacent room.

frastructure [13], in an attempt to demonstrate the RF signal
attenuation patterns and provide intuition on how they can be
leveraged for predicting the existence of a wall. In this mea-
surement campaign, we use the body-centric sensing hardware
of [13] that includes a BLE-enabled wearable sensor. This
set of experiment considers various links within a residential
environment. In each scenario, a person was rotating 360o (in
4 steps of 90o), holding the wearable device in front of his
body.

Fig. 1 plots the cumulative distribution functions (CDFs) of
the RSSI of all the packets received for 3 different wireless
links1, as measured by a receiver in the same room and in
a room that is separated by one wall. Observe that there is
a dynamic range in the RSSI that is mainly caused by the
body shadow of the user (approximately 20 dB in the same
room and 15 dB in the adjacent room). Despite the effect
of the body shadow, and despite the differences of the links
(user and receiver unit locations), observe that the CDFs of the
RSSI of the packets measured by the receivers, in the same
and adjacent room, do not overlap significantly; indicating that
the RSSI contains information that can be used for predicting
the existence of a wall.

III. WALL PREDICTION MODEL

An RSSI-based wall prediction model is, essentially, equiv-
alent to a function that transforms the RSSI, PRSSI , to a
number of walls, f : R → N. Given the nature of wave
propagation, f is defined by a sequence of RSSI thresholds,
t1, t2, . . . tK , that identify the limits of a room.

f(PRSSI) =


0 : PRSSI < t1
1 : t1 ≤ PRSSI < t2
. . .
K − 1 : tK−1 ≤ PRSSI < tK
K : tK ≤ PRSSI

(1)

K depends on the sensitivity threshold of the receiver, the
transmission power of the transmitter and the antennas used;
and defines an upper limit on the number of walls that can be

1Additional details on the measurements and the links in Section IV-A.



traversed. As a matter of fact, the RSSI thresholds are dictated
by the link budget formula.

Since a wall cannot amplify the radio signal, the RSSI
thresholds are also dictated by the following constraint.

tk < tk−1 : k ∈ [1,K] (2)

In this paper, we use three algorithms to generate the RSSI
thresholds, t1, t2, . . . tK , namely Supervised Medians, Support
Vector Machines (SVMs) and K-Means.

The first algorithm, Supervised Medians, assumes a set of
labelled data. Let M̃k be the median RSSI of the measurements
that correspond to k walls. We define the threshold tk as the
average of the corresponding medians.

tk =
M̃k−1 + M̃k

2
: k ∈ [1,K] (3)

The SVM [14] is a supervised classifier that leverages
training data to identify a hyperplane that separates them into
two classes. As with Supervised Medians, it requires a set
of labelled data input. The RSSI thresholds are derived from
multiple SVM classifiers, which are based on the radial basis
function (RBF) kernel (configured with c = 2 and σ = 1), and
used in a variation of the one-versus-all fashion. Assuming Mk

is a set of RSSI measurements that correspond to k walls,
∀ k ∈ [1,K], each threshold tk is estimated by an SVM
classifier that is trained with data from sets

⋃
i∈[0,k−1]Mi and⋃

j∈[k,K]Mj . Before training, the input data are centered to
their mean and scaled to have a unit standard deviation. We
did not observe any significant variance of the results based
on the configuration parameters c and σ.

K-Means [15] is an algorithm that clusters data into K
groups. Starting with K arbitrary centroids, the algorithm
iterates between assigning observations to the closest centroid
and updating the centroids to the mean of the clustered
observations. Contrary to the previous methods, K-Means is an
unsupervised algorithm that operates on unlabelled data. This
is of particular value in our application of interest. Unlike
the two previous methods that require the predicted RSSI
thresholds to be generalisable to an unknown new residential
environment, K-Means constructs new thresholds for each new
environment. In this application, K derives from the upper
limit on the amount of walls. The output of K-Means is
K +1 centroids. Using (2), we correspond each centroid to a
number of walls by sorting the centroids in descending order.
Assuming C0, C1 . . . CK is the sorted sequence of centroids,
the RSSI thresholds are defined as follows.

tk =
Ck−1 + Ck

2
: k ∈ [1,K] (4)

Next, we evaluate the performance of the three aforemen-
tioned models on predicting the number of walls.

IV. MODEL EVALUATION

The evaluation of the RSSI-based wall prediction model
is twofold. We experiment with training the model with both

system-level and channel-level measurements. For the system-
level training, we use the SPHERE infrastructure [13], which
is based on BLE for wireless communications, to collect a data
set of RSSIs for various links in the SPHERE house (shown
in Fig. 2). This data set is split into two; one is used for
training the models and the other is used for testing them.
To identify the resilience of the model to different access
point and user locations, and identify the importance of the
particular platform, we also train the model using data from a
separate channel-level measurement campaign. This data set is,
essentially, measurements of the channel gain using continuous
waves. Considering that in the end platform only RSSI values
will be available, the model is tested using the system-level
measurements.

A. Training with System-Level Measurements

For the collection of the system-level RSSI measurements,
we use the prototype SPHERE infrastructure [13] that is
deployed to a residential property in the city of Bristol,
UK. The SPHERE infrastructure incorporates a BLE-enabled
wearable sensor that broadcasts to an infrastructure. The wear-
able sensor employs a low profile patch antenna (dimensions:
17.8×18.5×1.3 mm, efficiency: 55%, maximum directivity at
2440 MHz: 6.8 dBi) [16]. The system achieves high energy-
efficiency by using BLE in connectionless mode (i.e. broad-
casting mode). To provide reliable full-house coverage, three
BLE receivers are deployed in the SPHERE house. Each BLE
receiver incorporates two radios that employ two orthogonally
polarised dipole antennas, working in parallel. For details on
the receiver antennas we refer the reader to [17]. We found
empirically that the system can support up to 2-wall links
(K = 2).

Fig. 2 depicts the floor plan of the SPHERE house, denoting
the locations of the access points (APx) and the user with
the wearable sensor (Wx) that are considered in this paper.
For the system-level measurements, the three access points
are deployed in locations AP3, AP5 and AP6. The RSSI
measurement campaign considers 5 user locations (W1, W3,
W4, W6 and W8); that is 15 links in total. In fact, the links
shown in Fig. 1 are part of this data set. As explained in
Section II, in each case, the user was rotating 360o (in 4 steps
of 90o), holding the wearable device in front of his body.

Prior to training the various models, we process the raw
RSSI data as follows. First, we average the RSSI values of
the packets that are received in both orthogonally polarised
antennas. As a user changes his orientation to the access point,
the antenna that is aligned with transmitting antenna on the
wearable yields a higher RSSI and vice versa. Therefore, the
average of the two values decreases the dynamic range of
the RSSI values. The raw RSSI data are also passed through
a low pass filter, i.e. a moving average with a window of
w. The moving average improves the performance of all
the considered training algorithms, primarily by filtering the
RSSI variations caused by fast-fading. For the algorithms that
require labelled data, Supervised Medians and SVM, labelling
is conducted as follows: AP3-W3, AP3-W1, AP5-W6 and
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Fig. 2. SPHERE house floor plan.

AP6-W4 are 0-wall links; AP3-W6, AP3-W4, AP5-W1, AP5-
W3, AP5-W4, AP5-W8 and AP6-W8 are 1-wall links; and
AP3-W8 is a 2-wall link.

Fig. 3 shows the average wall identification rate of the three
considered algorithms averaged over 100 repetitions and for
various values of the window w. In each repetition, the model
is reconstructed using a new randomly selected 50% of the
data set. Then, the model is tested on the other half of the
data set. We observe that the window of the rolling average
primarily affects the performance of K-Means that maximises
the wall identification rate at a window of 9 samples (87%).
Less affected by the rolling average, SVM yields the best
performance (90%). Lastly, the performance of Supervised
Medians is at 84%.

As indicated in the previous section, K-Means has particular
practical value. Contrary to supervised algorithms, which have
practical value only if their model can be generalised to an un-
known scenario, K-Means constructs a unique model for each
particular scenario, in an unsupervised manner. Moreover, the
results, presented in this section, suggest that its performance
is comparable to the supervised alternatives.

B. Training with Channel-Level Measurements

In this section, we are interested in generalising the results
of the previous section to different links and platforms. In
particular, we train the models using raw data from a channel
measurement campaign that is protocol-independent; i.e. uses
continuous waves generated by a Vector Network Analyser
(VNA). We then test the performance of these models on the
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Fig. 3. Wall identification rate with 50% of the system-level measurements
for training and 50% for testing (unless plotted, σ < 0.006).

system-level RSSI measurements of Section IV-A.
In the channel-level measurements, we measure the channel

gain in the 2.4 GHz band using a VNA. It should be clarified
that, in addition to the path loss, the measurements include the
transmit and receive antenna gains. All channel measurements
were performed with the same patch antenna mounted on the
wrist of a human subject, who was sitting on a stool, which
was mounted on a turntable and rotated in azimuth through
360◦ with the help of motors (with a step of 30◦). Each
measurement was conducted twice; once with the arm parallel
to the body and once with the arm orthogonal to the body. On
the receiver end, the same orthogonally polarised monopole
antennas were deployed in locations AP1, AP2 and AP4, as
shown in Fig. 2. The user locations considered are W2, W5
and W7; a total of 12 links considering the 2 arm positions.

Before training the models, the raw channel gain data is
transformed into RSSI. First, we account for the transmis-
sion power used by the end platform, by adding 4 dBm
to the channel gain data set. Indeed, the addition of the
transmission power to the channel gain estimates the received
signal strength. We then account for the error of the RSSI
measurements reported by the BLE platform. To measure
the error in a controlled environment, we connect the BLE
platform directly to a spectrum analyser, using low-loss wires
and 30dB attenuators. Fig. 4 reports the results, which we fit
with a quadratic function.

Similarly to the system-level data set, we then average
the values that correspond to the two orthogonally polarised
antennas and pass the data through a low pass filter (with
a window of w). For the algorithms that require labelled
data, Supervised Medians and SVM, labelling is conducted
as follows: AP1-W2, AP2-W2 and AP4-W5 are 0-wall links;
AP1-W5, AP2-W5, AP4-W2 and AP4-W7 are 1-wall links;
and, AP1-W7 and AP2-W7 are 2-wall links.

Fig. 5 shows the average wall identification rate of the three
considered algorithms averaged over 100 repetitions and for
various values of the window w. In each repetition, the model
is reconstructed using a subset of randomly selected channel-
level measurements. Then, the model is tested on the system-
level data set. We observe that all three algorithms yield
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Fig. 5. Wall identification rate with the channel-level measurements for
training and the system-level measurements for testing (σ < 0.006).

similar performance (91%) and are marginally affected by the
window of the rolling average filter. Interestingly, for some
cases, the performance of a model trained with channel gain
measurements performs better than the respective experiment
of Section IV-A. This phenomenon is explained by the fact
that the channel-level measurements is a larger data set that
captures better the effect of multi-path propagation and body
shadowing with finer rotations of 30◦ instead of 90◦. The
results further demonstrate that the wall prediction models are
resilient to the exact locations of the access points and the
exact location of the user.

Lastly, the results presented in this section, suggest that the
adaptation of the wall prediction models to another BLE radio
or another wireless communications protocol is possible, as-
suming the deviation of the reported RSSI from a known point
of reference is measured and considered in the calculations.

V. FLOOR PLAN CONSTRUCTION

As a use case scenario, we apply the RSSI-based wall
prediction model of Section III to the problem of residential
floor plan construction. The algorithm operates as follows.
A transmitted packet is received by multiple access points,
either correct or with channel errors. Assuming a number of
access points (N ), we start by assigning to the access points an
arbitrary label from 1 to N . A given vector of RSSI values,

1
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3

4

Fig. 6. Floor map prediction for the SPHERE house.

sorted by the label of the respective access point, is passed
through (1) and translated into a vector that counts the walls
between the user and the respective access point. We consider
two types of such vectors. The vectors that contain a zero are
measurements where the user is estimated to be in the same
room with an access point. We use these vectors to identify
the wall relationships between access points. In particular, we
calculate the number of walls between access point i and
j, Rij , as the average absolute difference between the wall
predictions for i and j on all the vectors that contain at least
one 0-wall prediction. To construct the floor plan, the Rij

matrix is used as a set of constraints. Each access point, i, is
sequentially placed on a hexagon grid in the first position that
satisfies all the wall relationships, Rij , of the access points
placed in previous iterations, i.e. j < i − 1. Wall prediction
vectors that do not contain a 0-wall prediction are cases where
the user is estimated to be in room that does not have an access
point. A new room label is assigned to each unique vector like
that (labelling continues from N +1). Such rooms are placed
in the hexagon grid in the first position that satisfies all the
established wall relationship constraints.

The performance of the different wall prediction models
on floor map construction is evaluated next. In particular, we
use the data set described in Section IV-A, which employs
three access points (N = 3). It should be noted here that
in deployments with fewer access points per room, certain
rooms may demonstrate the same wall relationship profiles
and cause confusion. Nevertheless, in such cases, full-house
wireless coverage becomes a more important challenge [13]. In
line with the previous experiments, a different set of samples
is used for training and for testing. Fig. 6 demonstrates the
outcome of the floor plan construction algorithm for the case of
the SPHERE house (Fig. 2) in the case of a correct prediction.
Arbitrarily, the algorithm assigns the following labels: 1 to the
lounge (AP3), 2 to the bedroom (AP5) and 3 to the hall (AP6).
Label 4 is, then, assigned to the kitchen.

Fig. 7 shows the accuracy of the three considered models on
predicting the floor map of the SPHERE house over 10000 at-
tempts. Similarly to Section IV, in every attempt, the model is
reconstructed on a different randomly selected training set and
the map is constructed with a random subset of the remaining
test set. The test set is also passed through a low pass filter
(i.e. rolling average with a window of w). The accuracy, shown
in Fig. 7, is based on a binary evaluation, where any prediction
different to Fig. 6 is considered incorrect. Alternatively, a
score-based evaluation may be more appropriate in scenarios
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Fig. 7. Floor map construction accuracy using the system-level measurements
for training the wall prediction model.

where wall identification models are combined with other
modalities for floor map construction. We observe that all three
algorithms improve their accuracy with a higher w with K-
Means converging earlier at predicting the correct floor plan
(shown in Fig. 6). The SVM converges at a 95% recognition
rate, which indicates that the high mean wall identification rate
shown in Fig. 3 is not evenly distributed in all classes.

VI. CONCLUSIONS

In this paper, we construct a RSSI-based wall prediction
model that leverages the propagation patterns of RF signals
in residential environments with small rooms and thick walls,
to estimate the number of walls between a user (i.e. wear-
able sensor unit) and a receiver unit. We construct wall
prediction models using three different learning algorithms,
namely Supervised Medians, SVMs and K-Means. K-Means,
which has particular practical value due to the fact that it
generates unique models for each separate case in an un-
supervised manner, yields a wall identification rate of 87%.
For comparison, the supervised SVM yields the best wall
identification performance (90%). To explore the resilience of
the model to different wireless protocols and different links,
we use data from a channel gain measurement campaign to
construct the models. Testing these models on the system
RSSI measurements yields similar results, i.e. a maximum
performance of 91%. Lastly, we apply the wall prediction
model to predict the floor plan of a residential environment.

Given the promising results on a proof-of-concept sce-
nario, our future work follows two directions. The first is
to generalise and validate the concept on more residential
floor plans, including 2-storey houses. Indeed, the plan of
our research team for the following years is to deploy the
SPHERE technologies [13] to the houses of 100 volunteers
in the region of Bristol, UK. Such a deployment will give us
the opportunity to test the concepts presented in this paper
on a larger scale. The second direction is to fuse the wall
prediction models with other sensing modalities in a smart
home. This would enable assigning contextual labels to the
rooms instead of unique numbers. For instance, combining
the prediction of an activity recogniser (e.g. watching TV)

with localisation information (e.g. room 1), would allow us to
assign a contextual label to the respective room (e.g. lounge).
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