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Abstract: One of the main shortcomings of Received Signal Strength based indoor localisation techniques is the labour and time
cost involved in acquiring labelled ‘ground-truth’ training data. This training data is often obtained through fingerprinting, which
involves the user visiting all prescribed locations to capture sensor observations throughout the environment. These prescribed
sites must be annotated with reference coordinates which correspond to a known floor plan. In this work, we present ‘H4LO’
(Helmet for Localisation Optimisation): a low-cost robotic system designed to cut down on the labour by utilising an off-the-shelf
Light Detection and Ranging device. This system allows for Simultaneous Localisation and Mapping, providing the human user
with an accurate pose estimation and a corresponding map of the environment. The high resolution location estimation can then
be used to train a positioning model, where Received Signal Strength data is acquired from a human-worn wearable device. The
method is evaluated using live measurements, recorded within a residential property in Bristol. We compare the ground-truth
location labels generated automatically by the H4LO system with a camera-based fingerprinting technique from previous work.
We find that the system remains comparable in performance to the less-efficient camera-based method, whilst removing the need
for time-consuming labour associated with registering the user’s location.

1 Introduction

Fingerprinting is a well established family of model training meth-
ods in wireless indoor localisation literature [1, 2]. The usual
pipeline of 2-dimensional fingerprint training follows the discreti-
sation of evaluation space into x and y locations, or reference points
[1]. A transmitting device must visit each reference point and a num-
ber of receivers will capture RF information at that time, typically in
the form of Received Signal Strength (RSS) [3]. This process is then
repeated for each pre-defined location until a labelled fingerprint for
the space is obtained [1, 4].

The labelling of each reference point in the fingerprint is an
arduous task which takes a significant amount of time. A floor
plan is often necessary, in order to derive a list of training refer-
ence locations which have to be manually annotated in space. Then,
depending on the use case, a tailored method is devised to accurately
denote when the participant visits these predefined locations [4, 5].

Another major shortcoming of this technique is that it suffers
from performance deterioration over time and requires periodical re-
training [6]. This can happen due to changes in the layout of the
space [7], or through deliberate hostile action [8]. It is therefore in
the best interest of the system for the fingerprinting method to be
as simple and efficient as possible, in order to be easily performed
when required.

In addition to the above issues, it is also important to consider
each user’s propagation characteristics. A model trained on a specific
user is unlikely to perform well when generalised for other users [5].
This further complicates the problem, especially for cases when
training with non-technical participants who are unfamiliar with the
technologies involved [9, 10]. A chosen fingerprinting paradigm has
to therefore be easy to understand and utilise by users of various
technical experience.

The aim of the proposed system is to address all of the above con-
cerns, by utilising a Light Detection and Ranging (LiDAR) device
to obtain the human user’s pose in space. This will generate ground-
truth coordinate labels without requiring any a-priori knowledge of
the environment. These labels will then be directly related to RSS
signatures captured during fingerprint training. We utilise Simul-
taneous Localisation and Mapping (SLAM) and pervasive indoor
localisation techniques, and propose a novel method of associat-
ing the two through the help of a robotic platform designed for
efficiency.

In this paper we present the hardware used, recent experimental
findings, and show the viability of this method as compared to pre-
vious work. The proposed H4LO fingerprinting training method is
evaluated using measured RSS data that was obtained from a wrist-
worn wearable device where participants occupied a residential two
story property in Bristol. This domicile was fully furnished, pho-
tographs are shown in Figure 1. The dataset used is available to the
community. The main contributions of this paper therefore are:

1. We outline the proposed hardware for ‘on-the-cheap’ LiDAR
scan acquisition, utilising popular ‘off-the-shelf’ devices.
2. We then present the exhaustive ‘free-living’ and fingerprinting
experiments gathered to prove its viability and upon publication, the
dataset used will be released for public access.
3. Finally, we compare the performance of this method to our
previous work where floor tags were used to provide location
labels [4].

We first provide the current overview of the literature in Section
2. In Section 3 we outline all of the methods which are utilised by
our system. Section 4 will detail the pipeline of the system, from
the hardware setup to map generation and localisation. In Section 5
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Fig. 1: The experimental environment included all typical amenities
of a residential house. This photo shows the kitchen area.

we present the dataset, and reflect on the experiments performed and
present the results, comparing our approach to fingerprinting method
used in previous work. We discuss their viability and shortcomings
in Section 6. We conclude and provide points for future work in
Section 7.

2 Related Work

The literature relating laser range finders and RSS fingerprinting is
sparse [11–13] and not entirely comparable. The presented literature
indeed collects the RSS fingerprints and LiDAR data, but through the
use of trolleys and rigs, specifically designed to be traversed through
the environment by a technician or on its own. The trolleys remain
stationary while the relevant LiDAR data is collected. In our imple-
mentation, we use a human user which collects their own unique
fingerprints in a residential environment.

The use of human participants performing the fingerprinting can
be motivated by considering the uniqueness of each person’s walking
gait and radio propagation characteristics. It was shown that the per-
formance of indoor localisation algorithms differ, depending upon
the training which was received from the participants [5]. This is
especially true in the case of residential indoor localisation, where
the environment is small but saturated with various obstacles [4].
It is therefore likely, that trolley-based fingerprinting methods are
unable to capture each user’s unique propagation characteristics.

Some applications of LiDARs use human handlers [14, 15]. These
implementations assume that the LiDAR device is not used as part
of a robot’s perception sensor, but rather as a mapping tool [14, 15].
We aim to exercise a similar operation of the LiDAR in this paper,
by attaching the device on the participants themselves. However, our
implementation uses the entirety of SLAM pipeline, as in order to
be effective, the fingerprinting method must acquire reliable ground-
truth locations and generate the corresponding map.

The use of LiDARs for SLAM is well established in the commu-
nity [16, 17]. LiDAR-based SLAM follows the pipeline of matching
consecutive scans in order to recover the map and locations. Pure
scan matching however, suffers from accumulating error, due to
imperfections in measuring equipment and the environment [18].
There exist methods of error minimisation, such as loop closure from
graphs [18].

There exist implementations which utilise SLAM for sensor
signal-based localisation through Gaussian Process (GP) regres-
sion [19, 20]. For example, WiFi-SLAM appropriates the SLAM
pipeline of localisation and mapping in a setting of RSS modelling,
as opposed to spatial features. Work in [19] used various ambient
background sensor traces to perform PDR which was subsequently
optimised through SLAM techniques.

As is evident, there exist a need for reliable, automated indoor
localisation ground-truthing platform. This platform would be worn

Fig. 2: The ‘H4LO’.

by the users themselves as they perform RSS fingerprinting of the
environment. Furthermore, it has to be robust enough as to capture
each user’s unique gait and propagation characteristics, and at the
same time flexible enough to be able to deal with various environ-
mental obstacles which the users can encounter, such as stairs and
doorways. The presented system was designed to address the lessons
learnt from previous work [4] and to the authors’ best knowledge,
this is the first system and dataset of its kind.

3 Background

3.1 Map Generation and Pose Estimation

The map, along with the approximate location is provided by 2-
dimensional SLAM. It can be formalised by considering the LiDAR
returns as scan point clouds S = {st}t=1,...,T ∈ IR2. Each scan is
recorded as a set of polar coordinates in a corresponding location,
given by X = {xt}t=1,...,T , such that each xt specifies a pose
estimate in SE2:

xt = {x, y, θ} (1)

The locations are constrained within the boundaries of a map M .
SLAM aims to extract p(xt,M |S0:t−1), or the location xt and
the map M simultaneously by matching consecutive scans S0:t−1
together. The procedure of scan matching attempts to find a rigid
transformation of the scan at t− 1 into the frame of scan at t, given
by [16, 21, 22]:

St(ξ) =

[
px
py

]
+

[
cosφ − sinφ
sinφ cosφ

] [
x
y

]
(2)

where ξ = (px, py, φ) is the transformation vector. In terms of a
global map, this transformation aims to minimise the non-linear least
squares error between the current map and the transformation of the
most recent scan [21]:

argmin
ξ

T∑
t=1

(1−M(St(ξ))
2 (3)

The mapping of our environment is done through an occupancy
grid. We will omit its clarification here, directing the reader instead
to [23] for an in-depth explanation.

Due to the unpredictability in data collection and the environ-
ment, the scans, even if collected at the same location, might not
be precisely the same. A method relying purely on scan matching
will therefore accumulate error and make the location and the map
drift over time. To rectify this, the accumulated error is minimised
when visiting previously unveiled locations, as in GraphSLAM [18]
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Fig. 3: High level representation of the processes used to evaluate H4LO. The blue nodes describe hardware implementations and the green
software algorithms. The two unique HMM models are shown to highlight that the algorithms used different labelling techniques.

and Google’s Cartographer [21]. This aims to minimise the squared
error between the expected and relative measurements of a scan and
an underlying sub-map [21]. The algorithm used in this paper utilises
the MATLAB Robotics Toolbox, based on [21].

3.2 Discrete State Space Localisation

To combine these labels with the recorded RSS data to track the
user, a state space localisation method is used [4, 24, 25]. The floor
plan is parametrised as approximately equal size states. The models
of states contain the signals arriving from N Access Points (APs).
To simplify the model assumption, we choose for these signals to be
normally distributed. Following the notation for a Bayesian filter, the
probability of observing signal zt given location xj across all APs
N is:

p(zt|xt) =
N∑
k=1

N (zt|µjk, σjk) (4)

where 1 ≤ j ≤ L is the location state, and 1 ≤ k ≤ N is the
index of AP sensor. Observations are given by a vector zt(j) =
{z1, ..., zN}, and the location is specified as a point in Cartesian
space xt(j) = {x, y, z}. Equation 4 follows the Hidden Markov
Model (HMM), where λ = {π,A,B} specify the prior, transition
and emission parameters [26]. These parameters are estimated deter-
ministically in this work [24, 25]. The joint distribution over all
states and observations is given by:

p(x1:t,z1:t) = p(x0)

t∏
i=1

p(zt|xt)p(xt|xt−1) (5)

where p(xt|xt−1) specifies the system transitions, or stochastic
dynamics. The estimate of the posterior probability of each loca-
tion state is then computed recursively by the forward-backward
algorithm, which we will omit in this paper and refer the reader to
[27].

4 The ‘H4LO’ System

4.1 RSS Acquisition

The system makes use of the SPHERE-in-the-box infrastructure,
described in [9]. This infrastructure uses numerous Raspberry Pi-
based Access Points (APs) which act as a signal ’anchor’ for a
SPHERE wrist-worn wearable [28], transmitting over Bluetooth
Low Energy (BLE) at 5Hz. The BLE RSS is recorded as the user
moves through the environment. This infrastructure does not provide
labels.

4.2 Ground-truth Acquisition

The ground-truth labelling method which we will use as a reference
baseline in this study is exactly the same as the method from previous
work, detailed in [4]. This method is based on a abdomen-mounted
camera, and relies on floor-mounted fiducial tags, specifying empiri-
cally created state space. The synchronisation between the labels and
the RSS is done through the extraction of floor tag labels [29] from
the camera video.

‘H4LO’ relies on the LiDAR scan collection from head-worn
helmet, shown in Fig. 2. During data collection, the user performs
fingerprinting much like before, by walking through the environment
and collecting the RSS measurements. In our system however, the
helmet also provides the corresponding LiDAR point clouds, rep-
resenting different areas in the environment. This ensures that the
data from both RSS and LiDAR collected is user-centric and unique
across all participants.

The helmet comprises of a bike helmet, a power bank, Raspberry
Pi 3 and RoboPeak RP1 LiDAR device mounted on top of plywood.
The LiDAR collected scans at 10Hz, within a 6m range [30]. A 9-
DOF BNO055 IMU [31] is present but was not used in this study.
Timestamps are acquired through NTP from the SPHERE-in-the-
box infrastructure [9] to match with the RSS data. This entire system
was designed with cost in mind and comprises a total of £200 worth
of hardware at the time of writing.

As described in Section 3, the sequential nature of the scans make
it straight-forward to recover the map and the pose simultaneously.
After obtaining both, the system recovers the RSS signals corre-
sponding to the locations in the environment. By segmenting the
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(a) Downstairs area map recovered from User 1. (b) Upstairs area map recovered from User 1.

(c) Downstairs area map recovered from User 2. (d) Upstairs area map recovered from User 2.

Fig. 4: Extracted SLAM maps 4a, 4b, 4c, 4d

space into states using spatial constraints, the system assigns the data
to each state and learns the dynamics governing each state using an
adjacency matrix, which is later used to acquire the state transitions.

4.3 House Plan Discretisation

The map was then stored locally on the Raspberry Pi. The pre-
processing was minimal, in that the scans were only downsampled,
as to help reduce the computational cost of the SLAM algorithm.
After the pre-processing, the point clouds were fed to the MATLAB
Robotics Toolbox for SLAM, where their locations and map were
extracted. After extraction, the maps were rotated, as to face the same
way, and the locations were used to parametrise the floor space into
states. The algorithm used to parametrise can be found below:

The algorithm begins by establishing the initial state at the pose
extracted at t = 1. The location of this pose will serve as the center
point of the state, which is then assigned ‘hard’ boundary, visi-
ble as yellow squares in Figs. 4a, 4c, 5a and 4b, 4d, 5b and also
‘soft’ boundary, so called buffer, which acts as a decision border of
whether or not to create a new state. If passed, new state is created. If
not, the sensor readings are assigned to that state. At any time t > 1,
the algorithm iteratively searches whether the given poses fall into
an already assigned state. If so, the sensor readings are updated, as
is the adjacency between states. If not, a new state is created.

5 Experiments and Dataset

The experiments took place at a specially adapted test-bed house in
Bristol [4, 32]. In order to compare the two methods fairly, the envi-
ronment was parametrised into states at the same positions as in [4],
shown in Figs. 5c and 5d. The underlying plan in those figures was
obtained using ‘magicplan’ software∗ and is shown as a reference.

∗https://www.magicplan.app/

Input: {R} = Extracted poses, {L} = Location state vector,
{bl} = Buffer distance of specific state l, {RSS} = Sensor
readings

while t available do
if L == ∅ then

l← {rt,x, rt,y} // Input x and y from extracted
poses at t.
l← RSSt // Assign sensor readings and store in the

new state.
L← l // Create new location state in global state

vector and store.
else

for all available states in L do
if rt within bl then

l← RSSt
else

l← {rt,x, rt,y}
l← RSSt
L← l

end
for all available states in L do

l← assign possible adjacent states from L
end

end
end

end
Algorithm 1: State creation algorithm

Note, that the original state spaces in [4] do not include the house
plan.

There were 3 unique users performing fingerprinting using the
‘H4LO’ and the camera based approach at the same time. Each user
traversed the same environment at a different rate, taking different
routes. The routes can be ascertained by the progression of the auto-
matically generated states, whose index is monotonically increasing.

IET Research Journals, pp. 1–7
4 c© The Institution of Engineering and Technology 2015



(a) Downstairs area map recovered from User 3. (b) Upstairs area map recovered from User 3.

(c) Corresponding ground-truth downstairs. (d) Corresponding ground-truth upstairs.

Fig. 5: Extracted SLAM maps 5a, 5b with ground truth 5c and 5d

They performed two types of fingerprinting - one longer (16 min-
utes on average), staying at each state for a few seconds, and also a
quicker ’fly-through’ fingerprint (7 minutes on average).

In addition to the fingerprinting experiments, two of the users also
performed ‘free-living’ experiments, performing everyday routines.
These can be further separated into ‘single free-living’, where only
one user took part and ‘dual free-living’ where both users, wear-
ing wrist-worn sensors, participated at the same time. Note, that the
‘free-living’ experiments do not include the LiDAR data, and that
the presented maps were extracted from the thorough ‘longer’ fin-
gerprint data of each user. The use of ‘free-living’ experiments is
motivated by the need of thorough validation of the system - in these
experiments, the users were asked to behave naturally, traversing the
environment as they saw fit, and did not conform to any script. This
helps provide a good test bed for the robustness of this system.

Upon publication, the dataset used will be released for public
access∗. It comprises of the data from the wearable and the ‘H4LO’.
The wearable data includes the wrist-worn acceleration (sampled at
25Hz) and RSS (sampled at 5Hz). The ‘H4LO’ primarily provides
data from the LiDAR device, with the scans arriving at an average
rate of 10Hz. Additionally, the IMU attached to the ‘H4LO’ provides
data for roll, pitch, accelerometer and gyroscope, sampled at 100Hz,
and heading and magnetometer sampled at 50Hz.

The results of the SLAM run for a single user are shown in
Figs. 4a, 4c, 5a and 4b, 4d, 5b. The green and red ‘×’ specify the
beginning and end of the SLAM run. The states are given as yel-
low squares, and are enumerated as such. The cyan dots signify the
locations extracted from the LiDAR scans. To make the compari-
son between the methods fair, when running SLAM, the data was
manually segmented into downstairs and upstairs areas.

Each model was trained on the same fingerprint in two ways - one
using the camera derived labels [4] and the other using the ‘H4LO’
system. Then, both of the models were tested against specific subsets
of all the experiments. The results from these tests are separated into
the fingerprinting, single and dual living results, seen in Figs. 6, 7, 8

∗https://github.com/mkoz71/h4lo_fingerprint_automation_system

respectively. They are averaged across all participating users. Note,
that there were only four dual living experiments - results for both
participants result in 8 test sets.

As described before, the metric used to test the performance of
this system is the Euclidean error [33]. As is evident from the graphs,
‘H4LO’ has a comparable performance to the method used to gather
data in [4], in some instances even outperforming the baseline. It is
important to note here, that the expected results were not supposed to
outperform the fingerprinting method outlined in [4]. These results,
even if not entirely superior to the HRL, come at a fraction of the
labour.

A possible reason for the results could also lie in the way the
labels from both of the ground-truthing approaches are gathered and
quantised. Camera-based approach has an inherent advantage, in that
it is considered as the ground truth when gathering the data, con-
sidering only a single x, y position on the floor plan. The error for
H4LO was calculated from the available extracted poses on the map.
The error was therefore calculated between the quantised camera-
based labels and much more resolute poses, extracted from the
SLAM process. Inherently, this will yield more error, as the poses
are spread across a larger area of the map, and thus would gener-
ate more uneven and unfair, discrepancy between the prediction and
label.

6 Discussion

This paper has shown, that the efficient ‘H4LO’ system can be used
to generate a fingerprint training dataset with comparable results
to the time-consuming camera approach [4]. Through the utilisa-
tion of head-worn robotic rig, the ‘H4LO’ system performs mapping
and localisation simultaneously. This solves a number of challenges
which were set out in Sections 1 and 6, specifically regarding the
labour cost of existing fingerprinting methods. In addition to pro-
viding automation to the location labelling process, the system also
ensures a very reliable location estimation. Whilst the labelling sys-
tem in [4] did provide similar localisation performance, it relied
heavily on fiducial floor tags and their annotated coordinates within a
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Fig. 6: Localisation Results of the fingerprint experiments.

Fig. 7: Localisation Results of the single living experiments.

Fig. 8: Localisation Results of the dual living experiments.

house plan, both of which must be known a-priori. ‘H4LO’ removes
the need for floor plans, tags, human coordinate measurements and
costly processing of high dimensional camera data.

Since 2-dimensional SLAM is often sensitive to well-controlled
topology and dynamics (e.g. the extraction plane is assumed to be at
a constant height), the relative freedom of data capture in our setting
is unusual and could be considered to be detrimental to the quality

of the model’s outputs. This includes each user’s unique traits such
as body build, gait, walking speed and having to negotiate various
environmental challenges like stairs and door thresholds. Despite
this, our system is capable of collecting good quality data which
can be subsequently processed by existing state-of-the-art SLAM
implementations.

7 Conclusion

This work proved the viability of the ‘H4LO’ in service of cheap
and efficient fingerprinting technique. We have shown, that our sys-
tem is able to match the performance of a much more arduous
fingerprinting method with fraction of the required logistics. A com-
prehensive set of ground-truth location labels are generated from a
sixteen minute data acquisition session. This helps reduce the human
error associated with each fingerprint, and ensures a quick method of
obtaining the map and the relative location. The future work will
concentrate on improving the accuracy of the results using IMU
data from a wrist-worn device. Also, the hardware system could be
made to work in real-time. Additionally, this dataset can help with
interpretability of RSS data with regard to spatial features, and vice
versa.
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