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Abstract

In this work we aim to provide machine learning
practitioners with tools to answer the question: is
there class-conditional flipping noise in my labels?
In particular, we present hypothesis tests to reliably
check whether a given dataset of instance-label
pairs has been corrupted with class-conditional
label noise. While previous works explore the dir-
ect estimation of the noise rates, this is known to
be hard in practice and does not offer a real un-
derstanding of how trustworthy the estimates are.
These methods typically require anchor points –
examples whose true posterior is either 0 or 1. Dif-
ferently, in this paper we assume we have access
to a set of anchor points whose true posterior is
approximately 1/2. The proposed hypothesis tests
are built upon the asymptotic properties of Max-
imum Likelihood Estimators for Logistic Regres-
sion models and accurately distinguish the pres-
ence of class-conditional noise from uniform noise.
We establish the main properties of the tests, in-
cluding a theoretical and empirical analysis of the
dependence of the power on the test on the train-
ing sample size, the number of anchor points, the
difference of the noise rates and the use of realistic
relaxed anchors.

1 INTRODUCTION

When a machine learning practitioner is presented with a
new dataset, a first fundamental question is that of data qual-
ity (Lawrence [2017]) as this will determine any subsequent
learning. However, in supervised settings, an equally im-
portant but often overlooked question is the verification of
the quality of labels. For instance, in standard data collec-
tions, data curators usually rely on annotators from online
platforms, where individual annotators cannot be uncondi-

tionally trusted as they have been shown to perform incon-
sistently (Jindal et al. [2016]). Labels are also expected to
not be ideal in situations where the data is harvested from
the web (Fergus et al. [2005], Schroff et al. [2011]). In gen-
eral this is a product of annotations not being carried out
by (perfect) domain experts. While the existing literature
focuses on estimating the distortion(s) present in the labels
(see Section 4), in this paper, we take a step back and our
main contribution is the design and analysis of hypothesis
testing procedures that would allow us (under certain as-
sumptions we introduce later) to measure the likelihood that
the labels of a provided dataset have been corrupted. With
this information at hand, the practitioner can then make a
more informed choice of the learning strategy better suited
to the given dataset or even to revisit the data annotation
process altogether.

Focusing on binary classification, the goal is to train a clas-
sifier g : X →{−1,+1}, from a labelled dataset D train

n =
{(xi,yi)}n

i=1 ∈ (Rd×{−1,1}), with the objective of achiev-
ing a low miss-classification error: PX ,Y (g(X) 6=Y ). While it
is generally assumed that the training dataset is drawn from
the distribution for which we wish to minimise the error for
D train

n ∼ p(X ,Y ), this is often not the case. Instead, the task
requires us to train a classifier on a corrupted version of the
dataset D̃ train

n ∼ p(X ,Ỹ ) whilst still hoping to achieve a low
error rate on the clean distribution. In order to narrow down
the task, in this work we focus on one particular type of cor-
ruption that is pervasive in the examples described above,
instance-independent label noise, where labels are flipped
with a certain probability. This rate can either be uniform
across the entire data-generating distribution or conditioned
on the true class of the data point.

A key ingredient in our procedure is the input from the user
in the form of a set of anchor points. Differently from pre-
vious works, we assume anchor points for which the true
posterior distribution P(Y = 1 | X = x) is (approximately)
1⁄2. For a specific instance x, this requirement means that,
given the current set of features, an expert would not be able
to provide any help to identify the correct class label. While
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this will be shown to be convenient for theoretical purposes,
finding such anchor points might be rather difficult to ac-
complish in practice, so we show how to relax this notion
to a more realistic η(x) ≈ 1/2, which could be understood
as probably carrying little information about the label. In a
setting with multiple annotators, this could be understood
as the team disagreeing.

Our approach is based on the asymptotic properties of the
Maximum Likelihood Estimate (MLE) solution for Logistic
Regression models, and the relationship between the true
and noisy posteriors. On the theoretical side, we show that
when the asymptotic properties of MLE hold and the user
provides a single anchor point, we can devise hypothesis
tests to assess the presence of class-conditional label corrup-
tion in the dataset. We then further extend this ideas to allow
for richer sets of anchor points and illustrate how these lead
to gains in the power of the tests.

In Section 2 we cover the necessary background on MLE
asymptotics, noisy labels and define the necessary tools. In
Section 3 we illustrate how to carry a z-test using anchor
points on the presence of class-conditional noise. In Sec-
tion 4 we discuss related work and in Section 5 we present
experimental findings.

2 BACKGROUND

We assume we are provided with a dataset (X ,y) =
{(xi,yi)}N

i=1 ∈ (Rd × {−1,1}), and our task is to as-
sess whether the labels have been corrupted with class-
conditional flipping noise. We use y to denote the true label,
and ỹ to denote the noisy label. In general, the tilde (ỹ) will
be used to denote the noisy version of an object and hat (ŷ)
to denote an estimated version, unless specified otherwise.
We assume the feature vectors (x) have been augmented
with ones such that we have x→ (1, x).

We assume the data is generated from the following process:

yi ∼ Bernoulli(ηi) , ηi = σ(θ>0 xi) =
1

1+ exp
(
−θ>0 xi

)
And, following the Maximum Likelihood Estimation pro-
cedure we have:

θ̂n := argmax
θ∈Θ

`n (θ | Dn) = argmax
θ∈Θ

n

∏
i=1

`i (θ | xi, yi)

where: l (θ | xi, yi) =
yi+1

2 · logηi +
1−yi

2 · log(1−ηi).

In this setting, the following can be shown (See for example
Chapter 4 of Van der Vaart [2000]):

√
n
(
θ̂n−θ0

) D−→N
(
0, In(θ0)

−1) (1)

where Iθ0 denotes the Fisher-Information Matrix defined as:

In(θ0) = Eθ

(
−∂ 2`n(θ ;Y | x)

∂θ∂θ>

)
= Eθ (−Hn(θ ;Y | x))

where the expectation is with respect to the conditional
distribution, and Hn denotes the Hessian matrix. An import-
ant remark is that we can express In(θ0) = n · Ii(θ0), which
shows that as n→ ∞, the variance of the MLE estimator
goes to 0.

We will consider two types of flipping noise, which we
formally define below. In both cases the noise rates are
independent of the instance: P(Ỹ = −i | Y = i, X = x) =
P(Ỹ =−i | Y = i).

Definition 2.1. Bounded Uniform Noise (UN)
In this setting the per-class noise rates are identical: P(Ỹ =
1 | Y = −1) = P(Ỹ = −1 | Y = 1) = τ and bounded: τ <
0.50. We will denote this setting with UN(τ), and a dataset
D = (X ,y) inflicted by UN(τ) by: Dτ .

Definition 2.2. Bounded Class-Conditional Noise (CCN)
In this setting the per-class noise rates are different, α 6= β

and bounded α +β < 1 with: P(Ỹ =−1 | Y = 1) = α and
P(Ỹ = 1 | Y = −1) = β . We will denote this setting with
CCN(α,β ), and a dataset D =(X ,y) inflicted by CCN(α,β )
by: Dα,β .

An object of central interest in classification settings is the
posterior predictive distribution: η(x) = P(Y = 1 | X = x).
Its noisy counterpart, η̃(x) = P(Ỹ = 1 | X = x), under the
two settings, UN(τ) and CCN(α,β ), can be expressed as,

η̃(x) =

{
(1−α−β ) ·η(x)+β if (CCN)
(1−2τ) ·η(x)+ τ if (UN) (2)

See Appendix 7.1 for full derivation.

We consider loss functions that have the margin
property: `(y, f (x)) = ψ(y f (x)), where f : Rd → R
is a scorer, and g(x) = sign( f (x)) is the pre-
dictor. Let f ∗ = argmin f∈F EX ,Y ψ(Y f (X)) and
f̃ ∗ = argmin f∈F EX ,Ỹ ψ(Ỹ f (X)) denote the minim-
isers under the clean and noisy distributions, under
model-class F .

Definition 2.3. Uniform Noise robustness (Ghosh et al.
[2015])
Empirical risk minimization under loss function ` is said to
be noise-tolerant if PX ,Y (g∗(X) = Y ) = PX ,Y (g̃∗(X) = Y )

Theorem 2.1. Sufficient conditions for robustness to
uniform noise

Under uniform noise τ < 0.50, and a margin
loss function, `(y, f (x)) = ψ(y f (x)) satisfying:
ψ( f (X)) + ψ(− f (X)) = K for a positive constant
K, we have that g̃∗(x) = sign( f̃ ∗(x)) obtained from:
f̃ ∗ = argmin f∈F EX ,Ỹ ψ(Ỹ f (X)) is robust to uniform
noise.

For the proof of the theorem, see Appendix 7.2.
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Several loss functions satisfy this, such as: the square, un-
hinged (linear), logistic, and more. We now introduce our
definition of anchor points1.

Definition 2.4. (Anchor Points) An instance x is called an
anchor point if we are provided with its true posterior η(x).
Let A k

s denote a collection of k anchor points, with η(x) =
s ∀x ∈ A k

s . Furthermore, let us also define A k
s,δ , to imply

that η(xi) = s+ εi, for εi ∼ U([−δ , δ ]), with 0 ≤ δ � 1
(respecting 0≤ η(x)≤ 1). Also let As,δ = A 1

s,δ .

The three cases we will be referring to are as follows:

A k
1 → η(x) = 1 → η̃(x) = 1−α

A k
1/2 → η(x) = 1/2 → η̃(x) =

1−α +β

2
A k

0 → η(x) = 0 → η̃(x) = β

The first and last examples, A k
1 and A k

0 , have been used in
the past in different scenarios. In this work we will make
use of the second case, A k

1/2
. These instances should be

understood as providing no information with regards to the
label.

3 HYPOTHESIS TESTS BASED ON
ANCHOR POINTS

In this section we propose a framework to devise hypothesis
tests to examine the presence of class-conditional label noise
in a given dataset, assuming we are provided with an anchor
point(s).

Our procedure is based on a two-sided z-test (see for ex-
ample Chapter 8 of Casella and Berger [2001]) with a simple
null hypothesis, and a composite alternative hypothesis
(Eq.5). We first define the distribution under the null hy-
pothesis (Eq.6), and under the alternative hypothesis (Eq.7),
when provided with one strict anchor point. In this setting,
for a fixed level of significance (Type I error) (Eq.8), we first
derive a region for retaining the null hypothesis (Eq.9), and
then we analyse the power (Prop.3.1) of the test (where we
have that Type II Error = 1 - power). Table 1 summarises
these. We then extend the approach to examine scenarios
that include: 1) having multiple strict anchors, 2) having
multiple relaxed anchors, and 3) not having anchors.

With the application of the delta method (See for example
Chapter 3 of Van der Vaart [2000]) on Eq.1, we can get an
asymptotic distribution for the predictive posterior:

√
n(η̂(x)−η(x)) D−→N

(
0, [η(x){1−η(x)}]2 · x>I−1

θ0
x
)

(3)

1Different notions related to our definition of anchor points
have been used before in the literature – under different names –
we review their uses and assumptions in Section 4

Retain H0 Reject H0

H0 True Correct
Type I Error

(Eq.8)

H0 False Type II Error
Correct
(Eq.10)

Table 1: Identifying Type I and Type II errors.

This fails in the case of η(x) ∈ {0, 1}, so instead we work
with 1/2. Which, together with the approximation of the
Fisher-Information matrix with the empirical Hessian, we
get:

η̂(x) D−→N

(
1
2
,

1
16
· x>Ĥnx

)
(4)

where Ĥn = (X>DX)−1, where D is a diagonal matrix, with
Dii = η̂i(1− η̂i), where η̂i = σ(x>i θ̂).

For the settings: (D , A k
1/2
) and (Dτ , A k

1/2
), for an x ∈A k

1/2

we get: η̃(x) = 1
2 . While for (Dα,β , A k

1/2
) we get: η̃(x) =

1−α+β

2 . Note that under (Dτ , A k
1/2
), we also have [η̃(x){1−

η̃(x)}]2 = 1
16 similarly to (D , A k

1/2
).

We now have all the necessary ingredients to define our
two-sided hypothesis test.

3.1 A HYPOTHESIS TEST FOR
CLASS-CONDITIONAL LABEL NOISE

We now define our null hypothesis (H0) and (implicit) al-
ternative hypothesis (H1) as follows:

H0 : α = β

H1 : α 6= β
(5)

Under the null and the alternative hypotheses, we have the
following distributions for the estimated posterior of the
anchor:

H0 : η̂(x)∼N

(
1
2
,

1
16
· x>Ĥx

)
= N

(
1
2
, v(x)

)
(6)

H1 : η̂(x)∼N

(
1−α +β

2
,
[(1−α +β )(β −α)]2

16
· x> ˆ̃Hx

)
= N

(
1+α−β

2
, ṽ(x)

)
(7)

Level of Significance and Power of the test The level
of significance (also known as Type I Error) is defined as
follows:

a = P(reject H0 |H0 is True) (8)
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Rearranging Eq.6 we get the following:

η̂(x)− 1/2√
v(x)

∼N (0, 1)

Which for a chosen level of significance (a) allows us to
define a region of retaining the null H0. We let za/2 and z1−a/2

denote the lower and upper critical values for retaining the
null at a level of significance of a.

Retain H0 if:

za/2 ≤
η̂(x)− 1/2√

v(x)
≤ z1−a/2

za/2 ·
√

v(x)+ 1/2 ≤ η̂(x) ≤ z1−a/2 ·
√

v(x)+ 1/2

(9)

Using the region of retaining the null hypothesis, we can
now derive the power of the test.

Proposition 3.1. Power of the test
Under the distributions for the estimated posterior under
the null and alternative hypotheses in Eqs.6&7, based on
the definition of the hypotheses in Eq.5, the test has power:

1−b1 = P(reject H0 |H0 is False) (10)

b1 = Φ

 z ·
√

v(x)+
β −α

2√
ṽ(x)

−Φ

−z ·
√

v(x)+
β −α

2√
ṽ(x)


(11)

See Appendix 7.3 for the full derivation.

3.2 MULTIPLE ANCHOR POINTS

In this section we discuss how the properties of the test
change in the setting where multiple anchors points are
provided. The following expectation (E), and variance (V)
operators, unless specified otherwise, are with respect to
randomness in θ̂mle (see Eq.1).

Let η̂i correspond to the ith instance in A k
1/2

. Then for η̄ =
1
k ∑

k
i=1 η̂i we have:

η̄ ∼N

(
1
2
,

1
16
· x̄>Hx̄

)
where x̄ = 1

k ∑
k
i=1 xi with xi ∈A k

1/2
∀i.

For the full derivation see Appendix 7.4.

Anchors chosen at random We have that x ∈ A k
1/2
→

x>β0 = 0, so that for an orthonormal basis U , x = Ur.
Without loss of generalisation we let U :,0 =

β0
‖β0‖2

, and there-

fore η(x) = 1/2→ r0 = 0. In words: ∀x ∈A k
1/2

we have that

x’s component in the direction of β0 is 0. Pictorially, this is
shown in Fig.2 (left). Anchor points are picked from the dot-
ted line, which is described by the relationship η(x) = 1/2.

Now we make the assumption that x’s are random with
r j ∼ U([−c, c]). Therefore, Er j = 0, and Vr j =

c2

3 . In the
following we use the subscript S in the operator ES to denote
the randomness in choosing the set A . In words: we assume
that the set A k

1/2
is chosen uniformly at random from the set

of all anchor points.

Combining these we get:

ESv(x) = ESx>Hx = ESr>UHU>r

=
dc2

3
· tr(UHU>) =

dc2q
3

where q = tr(H).

While for k anchor points chosen independently at random,
we get:

ESv(x̄) = ES

[
1
k2

k

∑
i, j

x>i Hx j

]
= ES

[
1
k2

k

∑
i, j

r>i UHU>r j

]

=
dc2

3k
· tr(UHU>) =

dc2q
3k

Following the same derivation as above we get:

bk =Φ

 z ·
√

v(x̄)+
β −α

2√
ṽ(x̄)

 − Φ

−z ·
√

v(x̄)+
β −α

2√
ṽ(x̄)


If we let v = ESv(x) (similarly ṽ = ESṽ(x)), then we have
seen that ESv(x̄) = v

k (Reminder: expectations are with re-
spect to the randomness in picking the anchor points). Then
we have:

bk

b1
=

Φ

(
z
√

v+h
√

k√
ṽ

)
− Φ

(
−z
√

v+h
√

k√
ṽ

)

Φ

(
z
√

v+h√
ṽ

)
− Φ

(
−z
√

v+h√
ṽ

) ≤ 1

(12)
with h = β−α

2 .

In Fig.1 we compare the power (1− b) of the test, as a
function of the difference between the noise rates (β −α),
and number of anchor points used (k). We observe that a
larger number of anchor points leads to a higher value for
power.

3.3 MULTIPLE RELAXED ANCHORS-POINTS

In this section we see how the properties of the test change
in the setting where the anchors do not have a perfect η(x) =
1/2. We now consider the case of A k

1/2,δ .
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Figure 1: Power of the hypothesis test as a function of β−α ,
for a range of different ks. We set v = (1/16) · (X>DX)−1 =
0.1.

Let x be such that η(x) = 1
2 +ε , where ε ∼U([−δ ,δ ]) with

0 < δ � 1. (Note: by definition δ ≤ 1/2.)

For one instance we have the following:

E
θ̂

η̂ = 1/2+ ε, and ESEθ̂
η̂ = 1/2

For the variance component we have:

[η̂(1− η̂)]2 =

[(
1
2
+ ε

)(
1
2
− ε

)]2

≈ 1
16
− ε2

2

ignoring terms of order higher than ε2, under the assumption
that δ � 1.

When combined, for η(x) for an x ∈A k
1/2,δ , we obtain:

η ∼N

(
1
2
+ ε,

(
1

16
− ε2

2

)
· x>Hx

)
which under expectation with respect to the randomness in
picking the anchor point we get:

η ∼N

(
1
2
,

(
1

16
− δ 2

6

)
· x>Hx

)
(13)

Moving on to consider multiple relaxed anchor points now,
with η̄ = 1

k ∑
k
i=1 η̂i, for xi ∈A k

1/2,δ we have:

VSEθ̂
η̄ = VS

[
1
2
+

1
k

k

∑
i=1

εi

]
=

δ 2

3k
(14)

which shows that as we increase the number of anchor points
(k) the average of the posteriors concentrates around 1/2.

For the variance we have:

V
θ̂

[
1
k

k

∑
i=1

η̂i

]
=

(
1
16
− δ 2

6

)
· x̄>Hx̄

0

= 1
2

0

= 1
2

= 1
2 +

Figure 2: On the left we have the line from which the (strict)
anchors are sampled from uniformly at random. On the right
we show the rectangle from which the relaxed anchors are
sampled from.

For the full derivation see Appendix 7.6.

Finally, bringing everything together we get:

η̄ ∼N

(
1
2
,

(
1

16
− δ 2

6

)
· x̄>Hx̄

)
≈N

(
1
2
,

1
16
· x̄>Hx̄

)

3.4 WHAT IF WE HAVE NO ANCHOR POINTS?

In the previous section we have shown that we can relax the
hard constraint on the anchor points to be exactly η = 1/2,
to η ≈ 1/2. It might be natural then to ask if we need anchor
points at all. If instead we were to sample points at random,
then we would have the following:

Ep(X)η(X) = π (15)

The importance of needing for set of anchor points, either
A k

1/2
or A k

1/2,δ , is that, the anchor points would be centered
around a known value 1/2 , as opposed to having no anchor
points and sampling at random, where the anchor points
would end up being centered around π .

Knowledge of the class priors could allow for a different
type of hypothesis tests to asses the presence of label noise.
We do not continue this discussion in the main document as
it relies on very different type of information, but provide
pointers in the Appendix 7.8.

3.5 PRACTICAL CONSIDERATIONS

Beyond Logistic Regression Our approach relies on the
asymptotic properties of MLE estimators, and specifically
of Logistic Regression. More complex models can be con-
structed in a similar fashion through polynomial feature
expansion. However the extension of these tests to richer
model-classes, such as Gaussian Processes, remains open.
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Multi-class classification Multi-class classification set-
ting can be reduced to one-vs-all, all-vs-all, or more general
error-correcting output codes setups as described in Diet-
terich and Bakiri [1995], which rely on multiple runs of
binary classification. In these settings then we could apply
the proposed framework. The challenge would then be how
to interpret η = 1/2.

Finding anchor points While it might not be straightfor-
ward for the user to provide us with instances whose true
posterior is η(x) = 1/2, we do show how this can be relaxed,
by allowing η(x)≈ 1/2. We then show how multiple anchor
points can be stacked, improving the properties of the test.

4 RELATED WORK

There exist multiple works in the field of weak supervision
where instead of being provided with the ground truth labels,
the dataset is annotated with a weak version of them, usu-
ally derived from the true label and potentially influenced
by exogenous variables. It goes beyond the scope of this
work to discuss this field but these works and the references
therein offer an overview of the field: Patrini [2016], Menon
et al. [2015], Cid-Sueiro et al. [2014], Perello-Nieto et al.
[2017], Frénay and Verleysen [2013].

As an instance of weak supervision, we briefly discuss ap-
proaches in the literature that relate to tackling the problem
of learning with the presence of (flipping) noise in the labels.
As already discussed in Theorem 2.1, in the case of uniform
noise, under mild assumptions, we have robust risk minim-
isation. However, in the case of class-conditional noise, we
do not have similar guarantees.

One common approach is to proceed by correcting the
loss to be minimised. To better illustrate this, we con-
sider the notion of mixing matrix M ∈ [0,1]c×c, where
Mi, j = P(ỹ = e j | y = ei) and follow the exposition from
Patrini [2016]. Introducing the notation ei ∈ {0,1}c to de-
note the ith standard canonical vector with only the ith
position being non-zero, and the multi-class class posterior
p(y | x) ∈ [0,1]c, let us define the loss l :4c−1→Rc in vec-
tor form, where4c−1 ⊂ [0,1]c is the c-dimensional simplex,
as follows:

`(p̂(y | x)) =
(
`
(
e1, p̂(y | x)

)
, . . . , `(ec, p̂(y | x))

)> ∈ Rc

where in the case of the cross-entropy loss we have,

`
(
ei, p̂(y | x)

)
=−

(
ei)> log p̂(y | x) =− log p̂

(
y = ei | x

)
Theorem 1 from Patrini [2016] then states that,

argmin
p̂(y|x)

Ex,ỹ M−1`(p̂(y | x)) = argmin
p̂(y|x)

Ex,y`(y, p̂(y | x))

Anchor points and perfect samples Using these formu-
lations, we are in a position where, if we have access to M,
we can correct the training procedure to obtain an unbiased
estimator. However, M is rarely known and difficult to estim-
ate. Works on estimating M rely on having access to ‘perfect
samples’ and can be traced back to Scott et al. [2013], and
the idea was later adapted and generalised in Patrini [2016],
Menon et al. [2015], Liu and Tao [2015], Perello-Nieto et al.
[2020] to the multi-class setting. Interestingly, in Patrini
et al. [2017] authors do not explicitly define these perfect
samples, but rather assume they do exist in a large enough
(validation) dataset X ′ - obtaining good experimental res-
ults. Similarly, Xia et al. [2019] also work by not explicitly
requiring anchor points, but rather assuming their existence.

z P q Q z (1 )P + Q

q (1 )Q + P

Figure 3: An illustration of how CCN alters the class distri-
butions of two Gaussian class-conditional distributions.

Noisy examples An alternative line is followed by North-
cutt et al. [2019, 2017], where the aim is to identify the
specific examples that have been inflicted with noise. This
is a non-trivial task unless certain assumptions can be made
about the per-class distributions, and their shape. For ex-
ample, if we can assume that the supports of the two classes
do not overlap (i.e. η(x)(1−η(x))∈{0,1} ∀x), then we can
identify mislabelled instances using per-class densities. If
this is not the case, then it would be difficult to differentiate
between a mislabelled instance and an instance for which
η(x)(1−η(x)) ∈ (0,1). A different assumption could be
uni-modality, which would again provide a prescription for
identifying mislabelled instances through density estimation
tools.

Distilled examples The authors in Cheng et al. [2020] go
the opposite direction by trying to identify instances that
have not been corrupted → the distilled examples. At a
first step the authors assume knowledge of an upper-bound2

(Theorem 2 of Cheng et al. [2020]) which allows them
to define sufficient conditions for identifying whether an
instance is clean. At a second step they aim at estimating the
(local) noise rate based on the neighbourhood of an instance
(see Theorem 3 of Cheng et al. [2020]).

Informative priors The field of Bayesian Statistics is of-
ten concerned with constructing informative prior distribu-
tions that reflect the knowledge of experts. While it might

2The paper aims at tackling instance-dependent noise.
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be challenging eliciting information from experts and mod-
eling it quantitatively; it is often a necessary, and useful,
step in low-data settings. Methods that rely on experts quan-
tifying their beliefs include the conditional means approach
of Bedrick et al. [1996] where a prior distribution is derived
from the potential outcomes of given input, and Greenland
[2001] where priors beliefs are first expressed in weakly
informative ranges (see Gelman et al. [2008] for a discus-
sion.) Other works rely on constructing priors based on the
specification of quantiles (Garthwaite et al. [2005]).

Similarly to the first set of works we introduce and exploit
anchor points, but not for directly estimating the mixing
matrix, but rather to devise hypothesis tests to assess the
likelihood of the whole dataset having been inflicted with
noise.

5 EXPERIMENTS

In order to illustrate the properties of the tests, for the ex-
periments we consider a synthetic dataset where the per-
class distributions are Gaussians, with means [1, 1]> and
[−1, −1]>, with identity as scale. For this setup we know
that anchor points should lie on the line y =−x, and draw
them uniformly at random x ∈ [−4, 4].

We analyse the following parameters of interest:

1. N ∈ [500, 1000, 2000, 5000]: the training sample size.

2. (α−β )∈ [−0.05, 0.10, 0.20]: the difference between
the per-class noise rates.

3. k ∈ [1, 2, 4, 8, 16, 32]: the number of anchor points.

4. δ ∈ [0, 0.05, 0.10]: how relaxed the anchor points are:
η(x) ∈ [0.50−δ , 0.50+δ ].

For all combinations of N and (α−β ) we perform 500 runs.
In each run, we generate a clean version of the data D , and
then proceed by corrupting it to obtain a separate version:
Dα,β . For both datasets, we fit a Logistic Regression model.
We sample both the anchor points and relaxed anchor points.
Finally, we then compute the z-scores, and subsequently the
corresponding p-values.

The box-plots should be read as follows: Q1, Q2 & Q3
separate the data into 4 equal parts. The inner box starts
(at the bottom) at Q1 and ends (at the top) at Q3, with
the horizontal line inside denoting the median (Q2). The
whiskers extend to show Q1−1.5 · IQR, and Q3+1.5 · IQR.
IQR denotes the Interquartile Range and IQR = Q3−Q1.

In Figures 4, 5 and 6 we have the following: moving to
the right we increase the relaxation of anchor points, and
moving downwards we increase the training sample-size.
On the subplot level, on the x-axis we vary the number of
anchor points, and on the y-axis we have the p-values. In
all subplots we indicate with a red dashed line the mark of

0.10, and with a blue one the mark of 0.05, which would
serve as rejection thresholds for the null hypothesis.

The experiments are illustrative of the claims made earlier in
the paper. Below we discuss the findings in the experiments
and what they mean with regards to Type I and Type II errors.
We discuss these points in two parts; we first discuss the
effect on sample size (N), difference in noise rates (|α−β |)
and number of anchor points (k).

Size of training set (N) As the size of training set (N)
increases, the power increases. This can be seen Figures 4,
5 & 6. By moving down the first column, and fixing a value
for k, where N increases, we see the range of the purple box-
plots decreasing, and essentially a larger volume of tests
falling under the cut-off levels of significance (red and blue
dashed lines). This is expected given that the variance of
the MLE θ̂MLE vanishes as N increases, as is seen in Eq.1
and discussion underneath it. Subsequently, variance in Eq.3
also vanishes, which increases power (Eq.10).

Difference in noise rates (|α−β |) As |α−β | increases,
the power increases. This can be seen in Figures 4, 5 & 6, by
fixing a particular subplot in the first column (for example,
top-left one), and a value for k, we see again that the volume
moves down. As presented in Eq.11, as β −α increases, the
power also increases.

Number of anchor points (k) The same applies to the
number of anchor points – as the number of anchor points
(k) increases, the power of the test increases. This can
be seen in all three figures by focusing in any subplot
in the first column, and considering the purple box-plots
moving to the right. In Eq.12 we see effect of k on the power.

In all three discussions above we focused on the first column
of each of the figures – which shows results from experi-
ments on strict anchors. What we also observe in this case
(the first column of all figures) is that the p-values follow
the uniform distribution under the null (as expected, given
the null hypothesis is true) – shown by the green box-plots.
Therefore the portion of Type I Errors = a (the level of sig-
nificance Eq.8). When we relax the requirements for strict
anchors to allow for values close to 1/2, we introduce a
bias in the lower and upper bounds in Eq.9 of +ε . While
Eε = 0 this shift on the boundaries of the retention region
will increase Type I Error. On the other hand, in Eq.14 we
see how this bias decreases as you increase the number of
anchor points. Both of these phenomena are also shown
experimentally by looking at the latter two columns of the
figures.

Anchor point relaxation (δ ) Lastly, we examine the ef-
fect of relaxing the strictness of the anchors (δ ), η(x) ∈
[0.50− δ , 0.50+ δ ] on the properties of the test. As just
discussed we see that as we increase the number of anchor
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Figure 5: Box-plots with fixed |β −α|= 0.10. Red dotted
line indicates the mark of 0.10, and the blue one 0.05.

points Type I Error decreases (volume of green box-plots
under each of the cut-off points). We also observe that, as
compared to only allowing strict anchors, the power is not
affected significantly – with the effect decreasing as the
number of anchor points increases. Furthermore, in the lat-
ter two columns we also observe the phenomena mentioned
in the discussion concerning the first column only.
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Figure 4: Box-plots with fixed |β −α|= 0.05. Red dotted
line indicates the mark of 0.10, and the blue one 0.05.
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Figure 6: Box-plots with fixed |β −α|= 0.20. Red dotted
line indicates the mark of 0.10, and the blue one 0.05.

6 CONCLUSION & FUTURE WORK

In this work we introduce the first statistical hypothesis test
for class-conditional label noise. Our approach requires the
specification of anchor points, i.e. instances whose labels
are highly uncertain under the true posterior probability dis-
tribution, and we show that the test’s significance and power
is preserved over several relaxations on the requirements for
these anchor points.

Our experimental analysis, which confirms the soundness of
our test, explores many configurations of practical interest
for practitioners using this test. Of particular importance
for practitioners, since anchor specification is under their
control, is the high correspondence shown theoretically and
experimentally between the number of anchors and test
significance.

Future work will cover both theoretical and experimental
components. On the theoretical front, we are interested in
extending this work to the multi-class setting (and under-
standing the implications of our requirements in this case),
understanding the test’s value under a richer set of classi-
fication models, and further relaxing requirements on true
posterior uncertainty for anchor points. Experimentally, we
are particularly interested in applying the tests to diagnost-
ically challenging healthcare problems and utilising clinical
experts for anchor specification.
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7 APPENDIX

7.1 DERIVATION OF THE NOISY POSTERIOR

We can compute the noisy posterior: η̃(x) = P(ỹ = 1 | X =
x) as follows:

η̃(x) = P(ỹ = 1, y = 1 | X = x)

+ P(ỹ = 1, y = 0 | X = x)

= P(ỹ = 1 | y = 1)P(y = 1 | X = x)

+ P(ỹ = 1 | y = 0)P(y = 0 | X = x)

= (1−α) ·η(x)+β · (1−η(x))

=

{
(1−α−β ) ·η(x)+β if (CCN)
(1−2τ) ·η(x)+ τ if (UN)

7.2 SUFFICIENT CONDITIONS FOR
ROBUSTNESS TO UNIFORM NOISE

In the case of uniform-noise we have that:

sign(η̃(x)−0.50) = sign((1−2τ) · (η(x)−0.50))
= sign(η(x)−0.50)

where the last equality holds under the assumptions in
Def. 2.1.

EX ,Y l(Y, f (X)) = EXEY |X l(Y, f (X)) = EXEY |X ψ(Y f (X))

but we have access to noisy versions of labels
EXEỸ |X ψ(Ỹ f (X))

= EX

[
η̃ ·ψ( f (X))+(1− η̃) ·ψ(− f (X))

]
= EX

[
[(1− τ)η + τ(1−η)] ·ψ( f (X))

+ [(1− τ)(1−η)+ τη ] ·ψ(− f (X))
]

= EX

[
(1−2τ) ·EY |X ψ(Y f (X))

+ τ · [ψ( f (X))+ψ(− f (X))]
]

= (1−2τ) ·EX ,Y l(Y, f (X))+ τ ·BIASτ(ψ)

This implies that if we train under uniform-noise with rate:
τ < 0.50, with a loss with the property that ψ( f (X)) +
ψ(− f (X)) = K for a constant K then risk minimisation
is tolerant to noise Ghosh et al. [2015].

7.3 DERIVATION FOR PROPOSITION 3.1

We let L and U denote the lower and upper bounds in Eq.9
respectively, and let ε ∼N (0, 1).

b1 = P(retain H0 |H0 is False)

= P
(

L≤ η̂(x)≤U | η̂(x)∼N

(
1+α−β

2
, ṽ(x)

))
= P

(
L≤ η̂(x)≤U | η̂(x) =

1+α−β

2
+
√

ṽ(x) · ε
)

= P

L− 1+α−β

2√
ṽ(x)

≤ ε ≤
U− 1+α−β

2√
ṽ(x)


= P

(
−z ·

√
v(x)+h√
ṽ(x)

≤ ε ≤ z ·
√

v(x)+h√
ṽ(x)

)

= Φ

(
z ·
√

v(x)+h√
ṽ(x)

)
−Φ

(
−z ·

√
v(x)+h√
ṽ(x)

)

where we have used: h = β−α

2 , for ease of notation.

7.4 MEAN & VARIANCE FOR MULTIPLE
ANCHORS-POINTS

For the expectation we have:

E

[
1
k

k

∑
i=1

η̂i

]
=

1
k

k

∑
i=1

Eη̂i =
1
2

And, for the variance we have:

V

[
1
k

k

∑
i=1

η̂i

]
=

1
k2

[
k

∑
i=1

Vη̂i +2 · ∑
i, j>i

Cov(η̂i, η̂ j)

]

with

Vη̂i =
1

16
· x>i Hxi

and Cov(η̂i, η̂ j) =
1

16
· x>i Hx j

For the derivation of Cov(η̂i, η̂ j) see Appendix 7.5.

7.5 COVARIANCE OF ESTIMATED POSTERIORS
FOR THE CASE OF MULTIPLE
ANCHOR-POINTS

.

In this section we estimate Cov(η̂(xi), η̂(x j)) for the mul-
tiple anchors.
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We will make use of the following: Let θ̂ be such that
Eθ̂ = θ0, then we have:

f (θ̂)≈ f (θ0)+(θ̂ −θ0)
T

∇ f |θ0

+
1
2
(θ̂ −θ0)

T
∇

2 f |θ0(θ̂ −θ0)

= f (θ0)+
1
2
(θ̂ −θ0)

T
∇

2 f |θ0(θ̂ −θ0)

Let η̂(xi) = η̂i, then we have:

Cov(η̂i, η̂ j) = E [(η̂i−Eη̂i)(η̂ j−Eη̂ j)]

= E[η̂iη̂ j]−ηiη j

A few useful derivations (the hat (η̂(x)) is implied), we also
let ∇ = ∇θ :

1. ∇ηi = xiηi(1−ηi) = xiγi

2. ∇γi = ∇[ηi−η2
i ] = (1−2ηi)xiγi

3. ∇[ηiη j] = η j · xiγi +ηi · x jγ j

4. ∇[η j · xiγi] = xi [η j∇γi + γi∇η j]

= xi [η j · (1−2ηi)xiγi + γi · x jγ j]

= xix>i ·η j(1−2ηi)γi + xix>j · γiγ j

5. ∇
2[ηiη j] = xix>i ·η j(1−2ηi)γi

+2 · xix>j · γiγ j

+ x jx>j ·ηi(1−2η j)γ j

by plugging ηi = η j = 1/2 in item 5 above, combined with
Eq.1, and approximation of the Fisher-Information matrix
with the hessian, we get:

Cov(η̂(xi), η̂(x j)) =
1

16
x>i Ĥx j

7.6 VARIANCE FOR MULTIPLE RELAXED
ANCHOR-POINTS

For the variance we have:

V
θ̂

[
1
k

k

∑
i=1

η̂i

]
=

1
k2

[
k

∑
i=1

V
θ̂

η̂i +2 · ∑
i, j>i

Cov
θ̂
(η̂i, η̂ j)

]

with

ESVθ̂
η̂i =

(
1

16
− δ 2

6

)
· x>i Hxi

and ESCov
θ̂
(η̂i, η̂ j) =

(
1

16
− δ 2

6

)
· x>i Hx j

For the derivation of Cov(η̂i, η̂ j) see Appendix 7.7.

7.7 COVARIANCE OF ESTIMATED POSTERIORS
FOR THE CASE OF MULTIPLE RELAXED
ANCHOR-POINTS

In the section we estimate: Cov(η̂(xi), η̂(x j)) for the case
of having multiple relaxed anchors.

We continue from Item 5 of Appendix 7.5:

∇
2[ηiη j] = xix>i ·η j(1−2ηi)γi

+2 · xix>j · γiγ j

+ x jx>j ·ηi(1−2η j)γ j

We let ηi = 1/2+εi and η j = 1/2+ε j, then we have: (for the
first and third terms above)

η j(1−2ηi)γi =

(
1
2
+ ε j

)
(−2εi)

(
1
2
+ εi

)(
1
2
− εi

)
ES[η j(1−2ηi)γi] = ES

[(
1
2
+ ε j

)
(−2εi)

(
1
2
+ εi

)(
1
2
− εi

)]
= ES

[
(−εi)

(
1
2
+ εi

)(
1
2
− εi

)]
= ES

[
−εi

(
1
4
− ε

2
i

)]
= 0

For the second term we have:

γi =

(
1
2
− εi

)(
1
2
+ εi

)
=

1
4
− ε

2
i

ESγiγ j = ES

(
1
4
− ε

2
i

)(
1
4
− ε

2
j

)
=

1
16
− δ 2

6
+δ

4

≈ 1
16
− δ 2

6

7.8 TEST BASED ON PRIORS

Another important relationship is that between the clean and
noisy class priors: π̃ = P(ỹ = 1):

P(ỹ = 1) = P(ỹ = 1, y = 1) + P(ỹ = 1, y = 0)
= P(ỹ = 1 | y = 1)P(y = 1)
+ P(ỹ = 1 | y = 0)P(y = 0)

= (1−α) ·π +β · (1−π)

which under the two settings, UN and CCN, gives:

π̃ =

{
(1−α−β ) ·π +β if (CCN)
(1−2τ) ·π + τ if (UN) (16)

The relationships in Eq.16, combined with the knowledge of
the true class priors, would allow someone to carry out Bi-
nomial Hypothesis Tests for presence of label noise. These
tests would not need to rely on MLE asymptotics.
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