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Abstract— This paper describes the performance of beat
detection and heart rate variability (HRV) feature extraction
on electrocardiogram signals which have been compressed and
reconstructed with a lossy compression algorithm. The set par-
titioning in hierarchical trees (SPIHT) compression algorithm
was used with sixteen compression ratios (CR) between 2 and
50 over the records of the MIT/BIH arrhythmia database.
Sensitivities and specificities between 99% and 85% were
computed for each CR utilised. The extracted HRV features
were between 99% and 82% similar to the features extracted
from the annotated records. A notable accuracy drop over all
features extracted was noted beyond a CR of 30, with falls of
10% accuracy beyond this compression ratio.

I. INTRODUCTION

The ECG signal can provide useful diagnostic information.
Currently, most monitoring is performed within the hospital
environment. This situation is undesirable, due to the scarcity
of expensive hospital resources. In addition, ambulatory
monitoring outside the clinical environment provides real life
data over a longer time-frame, thereby providing the clinician
with more relevant data with which to make a diagnosis.

Ambulatory ECG monitors have existed for some time,
with current trends towards achieving a longer operating
life and greater processing capabilities at minimal power
levels. As information storage and transmission are major
consumers of power in embedded devices, data compres-
sion will result in improved transmission efficiency, reduced
storage requirements, lower power consumption and longer
battery life. However, an important consideration is the effect
of lossy compression on the fidelity of the signal.

SPIHT compression is a set partitioning coding method
that was originally proposed for image compression. It pro-
vides good compression performance with a reasonably effi-
cient algorithm. In previous research, Lu and Kim employed
SPIHT for ECG signal compression [1]. The algorithm was
chosen for use in this paper as it is considered the state-of-
the-art method for ECG compression.

QRS detection provides a well-documented platform for
diagnosing numerous heart rate conditions, such as arrhyth-
mia, etc [2]. Based on the canonical shape of the well-
behaved heart beat very high quality automatic extraction
of heart rate variability data has been successfully demon-
strated [3]. An equally high performance in QRS extraction
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for non-standard ECG traces is also important, but due to the
diversity of the shape of the ECG trace this is more difficult.
For this reason, the MIT-arrhythmia database [4] was used
in this study as it provides a rich catalogue of heart beat
classes over which the QRS detection will be performed.

In total the MIT-arrhythmia database provides 48 30-
minute ECG signal recordings that are sampled at 360 Hz.
Annotations are also provided which classify many features
of the heart rate signal.

Afonso et al.’s [5] ECG beat detection algorithm was used
in this study. It was chosen due to its excellent published
performance over the MIT-arrhythmia database, and because
it has a low subjective comparison with respect to the
computational load [3].

This study demonstrates the effect of the SPIHT compres-
sion algorithm on QRS detection and feature extraction using
the MIT-arrhythmia database.

II. METHODS

A. Compression

The effect of lossy ECG compression can be quantified
by comparing metrics extracted from the original and recon-
structed signals (data that resulted from a lossy compression
and subsequent reconstruction will be referred to as lossy
data).

The encoding process begins with the discrete wavelet
transform being applied to the ECG signal. The SPIHT
algorithm is an efficient method of compressing quantised
wavelet coefficients to generate an embedded output bit-
stream. The main principles of the algorithm are based on
zero-tree coding, which SPIHT extends with a set partition-
ing sorting algorithm to process the wavelet coefficients in
order of importance[1]. This progressive encoding enables
the compression process to be terminated at any point to meet
a target bit rate. The same partitioning rules and decoding
path are implemented in the decoder, to reverse the process.

The SPIHT compression algorithm was used to compress
the ECG traces of the MIT-arrhythmia database with the
following compression ratios: {2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 25, 30, 35, 40, 50}. Once compressed and reconstructed,
the lossy data pertaining to each compression ratio was
passed to an automatic QRS detection algorithm.

B. QRS detection

Afonso et al.’s [5] beat detection algorithm was used for
this study. It decomposes the ECG into uniform frequency
bandwidths and uses a heuristic detection strategy to fuse de-
cisions from multiple one-channel beat detection algorithms
together [5].
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The MIT-arrhythmia database provides beat and non-beat
annotations (non-beat annotations are annotations flagging
non-beat events, e.g. the start of a rhythm change, etc). The
beat annotations are not always localised on the apex of the
QRS complex. A QRS complex may be in the form of a
spike in the up or downward direction, so a positive and
negative peak detection algorithm was executed over a small
range about each annotated QRS position (±5 samples). The
local maximum (or minimum) about this range was used as
the comparative QRS point.

These fixed QRS points were used as a baseline in order
to quantify the accuracy of the automatically extracted QRS
points of Afonso et al.’s algorithm over the original (non-
compressed) dataset. The beat detection algorithm provides
a set of data points (times at which a QRS complex was
deemed to have occurred). Each point in the extracted QRS
complex time array was compared to the annotated data. The
constraints of positive QRS complex identification were set
with an 88 ms tolerance time window which allowed QRS
points localised within the QRS onset and offset to be flagged
as correctly extracted QRS points, as discussed by Friesen et
al. [6]. Each point in the extracted QRS complex time array
was compared to the annotated data and if an extracted point
was found to be within the tolerance the point was deemed
successfully extracted. Additional post-processing was not
performed on the extracted QRS points.

C. Lossy analysis

For each quantitative measurement below, the extracted
QRS points were compared to the annotated QRS points.
The similarity to the results tabulated from the annotated
dataset were computed with: % similarity = 100% ⇥
(annotatedValue� lossyValue) /annotatedValue.

1) Sensitivity/specificity: Sensitivity (Se) and specificity
(Sp) are defined by:

Se =
TP

TP + FN
; Sp =

TP
TP + FP

(1)

where TP is the total number of beats detected correctly
(i.e. true positives), FN is the number of false negatives of
the algorithm, and FP is the number of false positives of the
algorithm.

These metrics gauge the accuracy of the beat detection
algorithm. The sensitivity reports the percentage of true beats
that were correctly recognised by the algorithm, while the
specificity is the percentage of beat detections that are true
beats.

The QRS complex times returned by the algorithm for
each lossy dataset were then compared to the annotated
beat times, and via equation (1) the relative sensitivities and
specificities were computed.

2) PRD: The Percentage Root Means Squared Difference
(PRD) is a measure of the percentage difference between two
signal traces. It is defined by:

PRD(x, bx) = 100%⇥

sP
N

n=1

(x(n)� bx(n))2
P

N

n=1

x(n)2
(2)

Fig. 1. Location of annotated (⇥) and automatically extracted (�) QRS
point locations

where x is the original ECG trace, bx is the lossy ECG
trace and both signal traces are of the same length, N .

3) Time-domain analysis: Two time-domain heart rate
variability features were extracted from the Heart Rate Trace
(HRT = 60⇥ fs/beatIntervals):

• Mean heart rate: HR
• Standard Deviation of heart rate: SD
4) Frequency-domain analysis: As the times at which the

heart beats are not periodic, traditional frequency-domain
analyses of the QRS complex series cannot be used. The
Lomb periodogram [7] was adopted to estimate the power
spectral density of the QRS beat signal x(t

n

) of length N .
It is defined by (3).

P

x

(f) = 1

2�

2

(
[P N
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2
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Where x̄ and �

2 are the mean and variance of the series.
⌧ makes the series insensitive to time shift, and is defined
by (4).

⌧ = 1

4⇡f

arctan
⇣P

N

n=1

sin (4⇡ft

n

) /
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)
⌘

(4)
The features that are extracted from the PSD were the

total respective powers in the low frequency (LF: 0.04 �
0.15 Hz) and the high frequency (HF: 0.15�0.4 Hz) bands.
The ratio LF/HF is a measurement of the sympathetic and
parasympathetic response of the nervous system [8].

III. RESULTS

A. QRS detection

The QRS detection algorithm was used over each record-
ing of the MIT-arrhythmia database and the extracted QRS
times were compared to those on the manually composed
annotation table. The majority of the QRS points were within
the 88 ms tolerance window specified by [6].

Figure 1 shows a particular example where the annotated
QRS points (shown by the ⇥) and the extracted QRS points
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Fig. 2. Sensitivity, specificity and PRD with respect to data volume savings

Fig. 3. Mean, standard deviation of heart rate and LF/LF ratio

(shown by the �) are marked on the same signal trace.
The time difference between the ⇥ and � is longer than
the tolerance window so while a beat was detected it was
flagged as both a false negative and a false positive. In
three (recordings: 107, 119, 121) cases this effect dominated
the QRS detection, resulting in very poor sensitivities and
specificities (both approximitely 50%) and these recordings
were omitted from further analysis. In other recordings
this mismatch was also present, and the effect of this on
QRS extraction figures will be discussed in the subsequent
sections.

Typically, if this detection artefact was present in the
analysis of the original dataset, it followed through to the
lossy datasets too.

B. Lossy analysis

The results are presented with respect to the Data volume
Saving (DS = 100%⇥ (1� 1

CR

).
1) Sensitivity/specificity: Afonso et al. used the MIT-

arrhythmia database annotations in order to compute the
performance of their algorithm. The values for sensitivity and
specificity (when averaged over each recording in the MIT-
arrhythmia database) were given as: 99.59% and 99.56%[5].

The sensitivity and specificity were computed for the
extracted QRS points of the algorithm over the original
dataset and were computed as 99.086% and 99.133%, see
Figure 2. These figures are marginally lower than those
computed by Afonso et al. due to the points discussed in
Section III-A.

Figure 2 plots the sensitivity and the specificity of the al-
gorithms against the percentage saving that the compression
ratio provides. A corner point can be seen at a saving of
96.66% (CR = 30). Beyond this point the sensitivity and
specificity begin to drop sharply.

2) PRD: The PRD was calculated on a per-recording and
per-compression ratio basis. Figure 2 plots 100% � PRD
against the data volume savings. As expected the trend of

the trace tends to fall away from 100% with a growth in
savings.

3) Time-domain analysis: Both time domain features
were extracted over one minute epochs.

The heart rate is plotted against the data volume savings
in Figure 3. It maintains a close tie (> 97%) to the heart
rate that was extracted from the annotated data. As the
compression ratio increases this value begins to drop. The
percentage similarity drops below 97% at a data saving of
97.5% (CR = 40), and it continues to drop to 93% at a DS
of 98% (CR = 50).

The standard deviation of the heart rate averaged over each
test on an epoch-by-epoch basis is plotted in Figure 3. A
consistent level of percentage similarity is plotted until a
data saving of 96.66% (CR = 30) is encountered when it
begins to drop.

Both of the time domain features extracted show closest
similarities (> 97%) between DS values of 50% and 97%
(2  CR � 50). However, the highest similarity was found
when no compression ratio was applied to the dataset.

4) Frequency-domain analysis: The Lomb periodogram
was used to calculate the ratio between the low frequency
band and the high frequency band and is plotted against the
data volume savings in Figure 3.

The LF/HF ratio is the most dissimilar of the features to
those extracted from the annotated data over all compression
ratios (the highest level of similarity, 93%, to the annotated
levels is found at a data storage saving of 91% (CR =
25)). This feature also demonstrates the downward trend in
performance that has been characteristic of the other features
investigated in this study at data savings of above 96%
(CR = 30).

IV. DISCUSSION

A. Sensitivity/specificity

Figure 2 plots the sensitivity and specificity of Afonso et
al.’s QRS detector over each available dataset. The baseline
performance of the detector is comparable to the results of
[5]. The slight discrepancies can be attributed to incorrect
beat localisation. This study did not perform any additional
post-processing to the extracted QRS complex times, but
with appropriate techniques (such as widening the detection
window) the effect shown in Figure 1 could be rectified.

Intuitively, as the storage saving grows, the sensitivity
and specificity generally tends to fall. At a DS of 97.5%
(CR = 40) the sensitivity and specificity are still over 94%
and 96% but when the compression ratio reaches DS of 98%
(CR = 50) the sensitivity falls to 85% while the specificity
still remains at nearly 93%.

The reason for this drop in sensitivity when the savings
reaches 98% (CR = 50) is similar to the reason behind
the baseline sensitivity and specificity being slightly lower
than [5] (when averaged over each recording): Heart beats
are detected but are incorrectly localised on the ECG trace.
This effect begins to become increasingly prevalent as the
compression ratio approaches ⇠ 40 after which it begins to
dominate the detection results.
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It should be noted that the specificity rises after an initial
drop from a DS between 75% and 96% (CR between 4 and
30) to 98.24% and 98.36%. The rise in specificity means that
the number of false positives drops. However, the sensitivity
also drops during this period. Figure 2 demonstrates that
beyond a DS of 96% (CR = 30) the sensitivity and
specificity begin to drop dramatically.

B. PRD
As the compression ratio increases the PRD increases.

In Figure 2, it is interesting to note that the changes in
sensitivity and specificity are not influenced by the changes
in PRD until a PRD of 8% is reached.

C. HRV features
It was stated previously that no additional post-processing

was performed on the results of the QRS detector. It was also
observed that Afonso et al.’s QRS detector did not always
localise the QRS point on a peak of a heart beat.

The heart rate was calculated by averaging the beats
over an epoch. An effect of this averaging is that the
slight disturbances mentioned above are minimised due to a
filtering effect. This makes the heart rate signal trace perform
well up to high data saving ratios; the heart rate is the most
accurate feature in comparison to the annotation with 93.09%
accuracy at a DS of 98% (CR = 50).

The Lomb periodogram is, however, sensitive to the time
of each QRS point and the difference in the positioning of
the QRS peaks might contribute to the lower accuracy of this
feature against the reference data. This can be seen by the
lower overall accuracy of the algorithm over the data set and
the sharp drop after the compression ratio mentioned before.

D. ECG recordings
The MIT-arrhythmia database stores a wide collection of

heart beat events. The performance of the beat detection
algorithm, over the more “normal” ECG signal traces, is not
so adversely affected by the changes in DS or CR, and in
some cases (recordings 217, 231) a sensitivity or specificity
of 100% is maintained between the DS of 50% to 98%
(CR = 2 to 50), with other specific cases (recording 100)
demonstrate very slight performance change (< 0.5%).

That every feature trace demonstrates a corner at or near
a DS of 96% (CR = 30) indicates that compression ratios
beyond this point perhaps shoud not be considered for beat
detection and heart rate variability applications where high
degrees of accuracy are important.

V. CONCLUSION

This paper has examined the effect of lossy compression
of ECG signals on the performance of QRS detection.
Sensitivities and specificities of up to and over 99% can be
obtained with Afonso et al.’s algorithm with lossy data at a
DS of 50% (CR = 2). Both sensitivity and specificity remain
in the 98% bracket up to a DS of 95% (CR = 20) and PRD
of 5.8%. The HRV features extracted show a similar trend
maintaining high levels (> 90%) of similarity until a SD of
96% (CR = 25).

The stable QRS detection results provides the foundation
for accurate HRV feature extraction (> 90% for DS of 97%,
CR = 35) with the time domain features consistently being
more accurate (> 93% for DS of 98%, or CR = 50).

Therefore, if high QRS detection accuracy is necessary
for an application, but low volumes of data storage are also
required, this paper demonstrates that these can be achieved
with the SPHIT compression algorithm and Afonso et al.’s
beat detection algorithm. Figures 2 and 3 demonstrate that
high accuracies and high compression savings are obtained
with a CS of 96.6% (CR < 30) and below. Beyond this point
compression losses begin to heavily corrupt the sensitivity
and specificity recordings.
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