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Abstract—This paper investigates the fully automated computer-
based detection of allergic reaction in oral food challenges using
pediatric ECG signals. Nonallergic background is modeled using
a mixture of Gaussians during oral food challenges, and the model
likelihoods are used to determine whether a subject is allergic to
a food type. The system performance is assessed on the dataset of
24 children (15 allergic and 9 nonallergic) totaling 34 h of data.
The proposed detector correctly classified all nonallergic subjects
(100% specificity) and 12 allergic subjects (80% sensitivity) and is
capable of detecting allergy on average 17 min earlier than trained
clinicians during oral food challenges, the gold standard of allergy
diagnosis. Inclusion of the developed allergy classification platform
during oral food challenges recorded would result in a 30% reduc-
tion of doses administered to allergic subjects. The results of study
introduce the possibility to halt challenges earlier which can safely
advance the state of clinical art of allergy diagnosis by reducing
the overall exposure to the allergens.

Index Terms—Automated diagnosis, decision support, machine
learning, novelty detection.

I. INTRODUCTION

I T is estimated that 5% of infants under three years of age [1],
and 3–4% of adults [2] worldwide have food allergies. The

oral food challenge (OFC) is the definitive diagnostic test for
food allergies [3] and involves the supervised and controlled
ingestion of the implicated food allergen. OFCs are, by nature,
stressful for the subject and the subject’s family and have the
inherent risk of provoking allergic reactions as required by the
diagnostic task. Even when supervised by experienced staffs
who are trained to recognize, prevent, and manage allergy as
it manifests, 3–11% of OFCs end in anaphylaxis [4]—an acute
and potentially fatal allergic reaction if untreated [5]. This paper
aims at automatic detection of allergy which can reduce the
consumption of allergens and improve patient safety.
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Fig. 1. OFC diagnosis flowchart.

OFCs are conducted in a hospital environment, and the route
to a diagnosis of allergy during OFCs is outlined in Fig. 1. In this
Figure, the term “fail” is used to signify that allergic reactions
have occurred and the subject would be diagnosed allergic to
the allergen, and “pass” is used to identify that no reaction
has occurred. The subject (exclusively children in this study)
arrives in the hospital with their parents. Skin and blood tests
are performed on the subject [6] to give a baseline indication of
the subject’s susceptibility toward the potential allergen.

One age-appropriate portion of the suspect food type is di-
vided into five subportions which double in size from 1/32 to
1/2 of a portion. The smallest subportion is first consumed by
the subject and they are observed for 15–20 min by the allergist
after. During this period, the allergist observes the subject for
signs that an allergic reaction might be occurring. Symptoms
of an allergic reaction can include stomach pain, hive outbreak,
vomiting, swelling, and wheezing.

After this observation period, the subject is given a checkup
by the allergist. The vital signs of the subject, such as heart
rate, blood pressure, blood oxygen saturation level, and tem-
perature, are recorded manually at this stage. If any typical
symptoms of allergy are observed the test is concluded and
the subject has been proven allergic to the tested food. If no
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reaction has occurred the next subportion is consumed by the
subject.

This process is repeated until all the portions have been con-
sumed in totality. After this total consumption, the subject is
observed for a 2-h time period, as delayed reactions may occur.
The nature of reactions which require termination of OFCs need
not be severe. For example, the swelling of a subject’s lip dur-
ing a peanut challenge is sufficient for allergy to be confirmed.
Indeed, OFCs will be terminated at the first sign of allergy,
as untreated reactions will leave subjects in discomfort and in
danger of provoking a more serious reaction.

It can be seen that an OFC represents a challenging diag-
nostic task. The use of real-time classification of physiological
signals during OFC has the ability to reduce the length of the
test, the extent of the reaction, and improve the quality of life of
the subjects [7]. The blood pressure and blood oxygen satura-
tion levels are routinely collected as a feature of many medical
challenge test involving incremental exposures. These measure-
ments (known as “vital signs”) do not change until very late in
the event. It can be understood that the body’s physiological
response to stress is that adaptations will be made to ensure
that the oxygen levels and blood pressure will be preserved at
all costs. That is why, when they are seen to change, the pa-
tient is clearly decompensating. The electrocardiogram (ECG),
however, is more sensitive to physiological stress. The mea-
surement and quantification of ECG and heart rate variability
(HRV) changes during OFCs could provide a major safety div-
idend in the field of in vivo dynamic allergy testing as subjects
could be exposed to a lesser quantity of the allergen during their
diagnoses [8].

It has been clinically shown that the change before a phys-
ical manifestation of the allergic reaction changes can be ob-
served in characteristics of HRV [9]– [11], but obtaining this
has not before been investigated in a fully automated manner.
The ECG has also previously been shown to be successful for
diagnosing cardiac disease [12], sleep apneas [13], and for rec-
ognizing valid arterial-blood-pressure pulses [14], and in this
paper, we show it is also well suited for helping diagnose food
allergy.

In this paper, the normal (i.e., nonallergic) HRV features are
modeled with Gaussian mixture models (GMMs). This is a well-
known density estimation technique which establishes a multidi-
mensional representation of the underlying distribution of data.
The likelihood that new features are normal is computed, with
lower values of likelihood indicating that the features are less
likely to belong to the background distribution. The boundaries
of normality (i.e., the regions beyond which data can be consid-
ered abnormal) are established. When likelihoods are outside
of these boundaries, the features which were obtained are novel
with regard to the background data, and under these conditions
allergy is classified.

The automated classification procedure, however, cannot re-
place allergists during OFCs, as they will always be required
to administer doses of the allergens and recovery medicines
throughout. Therefore, the design criteria for the allergy detector
must complement the allergists during the diagnosis procedure,
and in order to not introduce negative effects to the quality of life

TABLE I
CHARACTERISTICS OF THE SUBJECTS POPULATING THE ALLERGY DATABASE

of the subjects, it is imperative that false positive classifications
are minimized as much as possible.

II. METHODS

A. Data Collection

Ethical approval was secured from the Clinical Research
Ethics Committee of the Cork Teaching Hospitals to monitor
subjects undergoing OFC. Informed parental approval was ob-
tained to record the ECG of the subjects. The ECG electrodes
were arranged in the Einthoven triangle configuration [15], and
were plugged into the ECG daughterboard of a SHIMMER [16]
device. The ECG data were streamed to a PC via Bluetooth
connectivity in real time.

In total, 24 subjects (14 male, 10 female) were monitored.
Fifteen of these subjects were diagnosed food allergic and nine
subjects were diagnosed nonallergic by OFC. Table I tabulates
the index, gender, age, challenge length, allergen, and result of
the subjects in the database.

B. Allergy Detector

Fig. 2 illustrates the classification procedure of the developed
allergy detector. From ECG data recorded during OFCs, QRS
points are extracted by an automatic QRS detector. HRV features
are extracted from these points. A GMM is then utilized to
continuously estimate the likelihoods that the subject has no
allergic symptoms during the OFC. After postprocessing the
likelihoods, a decision was made as to whether the subject is
allergic to a food type or not.

1) QRS Extraction: In this study, the QRS points of the ECG
traces of the subjects in Table I were automatically extracted via
a QRS detection algorithm based on the Hilbert transform [17].
This algorithm first filters and differentiates the ECG signal
to reduce noise and the contribution of ECG baseline wander,



Fig. 2. Automatic allergy detection procedure.

TABLE II
FREQUENCY DOMAIN FREQUENCY BANDS

P- and T-waves in the signal. The Hilbert transform is then
performed on this dataset and the envelope of this signal is
computed. Dynamic thresholding is utilized on the envelope and
QRS validation rules [18] are incorporated in order to increase
the QRS detection accuracy.

2) Features: Eighteen features were extracted from the QRS
points. These features were chosen due to their inclusion in the
HRV task-force and by relevant HRV researchers [19]. The
features were extracted every second from a sliding window
(epoch) of 60 s. The features which were extracted were:

1) Mean heart rate (HR) (n = 1).
2) Standard deviation of HR (n = 1).
3) Coefficient of variation of HR (n = 1).
4) Root mean squared successive difference of HR (n = 1).
5) PNN25/PNN50 and NN25/NN50: Percentage and sum of

successive QRS points that differ by more than 25 or 50ms.
(n = 4).

6) Sequential trend analysis: Percentage of successively in-
creasing and decreasing heart rates. (n = 1).

7) Poincaré: The length of the transverse and perpendicular
axes of the Poincaré plot, and the cardiac sympathetic
cardiac vagal indices of the HR. (n = 4).

8) Histogram: The ratio of the most frequent RR interval to
the number of beats of the set of QRS points in the epoch.
(n = 1).

9) Frequency domain: The normalized powers in the very-
low, low and high frequency bands specified in Table II.
The ratio between the low and high frequencies were also
selected. (n = 4).

Four features were calculated from the frequency domain,
which was computed by the Lomb Periodogram [20]. The Lomb
Periodogram computes spectral power from nonperiodically

sampled data, and is defined by
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and where the power spectrum (Px ) of a signal x (of length K)
is computed at a specified frequency, f . The standard deviation
of the signal is indicated by σl . The indices tn are the times at
which the signal was sampled, and are not periodic.

3) Normalization: The pediatric subjects were analyzed in
this paper, with widely varying baseline heart rate characteris-
tics obtained. For example, Subject 7 (seven months) presented
with an average heart rate of approximately 140 beats per minute
(BPM), whereas Subject 17 (10 years) presented with approxi-
mately 90 BPM. This difference is reflected in the HRV features.
Subject-adaptive normalization was performed to compensate
for the variability of features across subjects. Specifically, the
mean and standard deviation of the features were computed from
the very start of the recording of every patient, which is guaran-
teed to represent the nonallergic state. The mean and standard
deviation of the background features are used to normalize the
remainder of OFC recordings.

4) Statistical Modeling Using GMMs: The OFC does not
provide labels as to the current state of allergy throughout the
OFC. Therefore, epoch-by-epoch annotation of allergic and non-
allergic states cannot be resolved.

Thus, for each subject only the final result or label of the chal-
lenge is known. Additionally, the data recorded before the initial
checkup, and therefore before administration of the first dose of
the problem food, are available and is the only data that can be la-
beled nonreaction or background. These data (typically 10 min)
provide the only temporal annotations for the OFC. With one
class of annotated data (background class), a single-class clas-
sification platform can be utilized to determine the likelihood
that the HRV features of the remainder of the OFC (after the
consumption of the allergen) belongs to the background class.

When expert labels for all classes are available, multiclass
classification algorithms can be employed. However, when only
one class label is available, as is the case with allergy detection,
it is only possible to adopt novelty detection procedures. Single-
class classifiers and modeling tools have been successfully de-
ployed by the machine learning community. Identification of
seizure using one-class support vector machines [21] have been
performed by Gardner et al. [22]. GMMs applied to novelty
detection have been employed for epilepsy, state of anesthesia,
and vigilance quantification applications [23]. GMMs are also
widely used in the area of speech and audio processing for mod-
eling the conditional distributions of auditory units (phonemes,



Fig. 3. A sample likelihood series obtained from Subject 23.

phones, etc.) [24]. A comprehensive review of statistical ap-
proaches for novelty detection was performed by Markou and
Singh [25].

In this paper, allergy detection is performed using likelihoods
computed via GMM models built upon the background class.
For the GMM, the likelihood function is defined by

p (x|w,µ,Σ) =
M∑

i=1

wiN (x,µi ,Σi) (3)

where M is the number of Gaussians (referred to as the GMM
order), the weights wi are nonnegative and sum to 1, and
N(x,µ,Σ) denotes the multivariate Gaussian distribution

N (x, µ, Σ) =
1
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|x|
2

√
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(
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2
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)
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where µ is the mean vector and Σ is the covariance matrix. The
parameters of the GMM (wi , µi , and Σi) are obtained via the
expectation–maximization algorithm [26].

Principal component analysis (PCA) is commonly used to
preprocess the features before feeding them into the GMM [27].
It is used to reduce the dimensionality of the feature vector. More
importantly, the resultant transformed features are decorrelated
which allows the application of diagonal covariance matrices in
GMM.

5) Postprocessing and Decision Making: A vector of HRV
features is obtained from every epoch of ECG data, and these
features are then employed by the GMM to obtain the like-
lihood that the epoch in time represents normal, background
data. Lower likelihoods indicate that data are less likely to be-
long to the background class. Fig. 3 shows a sample likelihood
data series for Subject 23. The green region highlights the back-
ground activity before administration of an allergen, and the red
regions highlighted represent the times that checkups were per-
formed by the allergists. The doses are administered at the end
of every checkup after the subjects have been shown to remain
stable after the previous dose and interdose observation period.

The criteria for novelty (and therefore allergy classifications)
are chosen here to be that the likelihood must fall below a specific
threshold (th) for a given duration (d). The mean (µ) and standard
deviation (σ) of the background likelihood data are computed
from the testing subject. This step effectively provides automatic

adaptation of the generated subject-independent GMM model
of background activity for the test subject. The threshold (th) is
then defined by

th = µ − nσ (5)

where n is a factor which, when multiplied by σ, sets the thresh-
old to a constant value under the mean of the background likeli-
hood data. Large values of n require larger deviations from the
background likelihood levels in order to surpass the threshold.
The purpose of the duration parameter (d) is to reduce the effect
of spurious signals which might fall under a given threshold but
are not due to allergy but other cardiac or physical artefacts.

C. Leave-One-Out Performance Assessment

The data of the testing subjects are never available beforehand
in the clinic. It is thus necessary to assess the performance of
the developed allergy detector in a subject-independent manner.
There are various performance assessment routines proposed in
the literature [28] such as bootstrapping, split-sample, etc. Their
effect on the reported performance for neonatal seizure detection
has been compared in a previous study of our group [29]. The
split-sample method where one fixed partition of the available
data is allocated for training and the rest is used as a testing
set has several major disadvantages. Such a division results in a
potentially large bias. Overoptimistic or indeed overpessimistic
results can be obtained depending on what seems an arbitrary
partition of the data, i.e. a “good” or “bad” split.

Therefore, leave-one-out (LOO) is used here to assess the
performance of the developed allergy detector. In this procedure,
all but one subject are used for training and the remaining subject
is used for testing. The process is repeated until every subject
was tested, and the average performance is reported from these
24 splits. LOO is known to be an almost unbiased estimation of
true generalization error [30], and for databases of the order of
the allergy database here, LOO is the best routine to adopt.

D. Model Selection

In each of these 24 splits, nested cross-validation model se-
lection on the training 23 subjects data was performed to choose
suitable model parameters. Those include:

1) Percentage of variance retained by PCA for feature set
reduction:
The following set of values was searched: {90%, 95%,
99%, 99.9%, 100%}.

2) The number of Gaussians in the GMM model:
The following set of values was searched:
{2, 4,8, 16, 32, 64}.

3) The multiplicative factor (n) in decision making:
The unique, integer rounded values logarithmically dis-
tributed between 1 and 200 were searched (n = 38).

4) The duration parameter (d) in decision making:
The unique, integer rounded values logarithmically dis-
tributed between 1 and 200 were searched (n = 38).

In order to select a suitable set of n and d postprocessing
parameters, a cost function must be defined which selects pa-
rameters based on the performance metrics discussed in the



next section. It has already been stated that it is imperative to
not obtain false-positive classifications. With this consideration,
parameters which achieve 100% specificity in the nested cross-
validation are initially considered. From this reduced set, the
parameters which lead to the highest sensitivity are selected.
If there are more than a single set of parameters that satisfy
these conditions, the parameters which achieve the maximum
time-gain are finally chosen.

It can be seen that the model selection routine in our study is
completely independent of the performance assessment routine
and testing subject data were not seen or used at any time for
any supervised tuning of system parameters.

E. Metrics

Sensitivity and specificity were computed in order to measure
the performance of the automatic allergy detection framework.
Sensitivity measures the true positive rate, whereas specificity
measures the true negative rate.

Another metric which provides an insight into the algorithmic
performance is time-gain. It measures the average difference in
time between detections produced by allergists and the algo-
rithm for subjects who were diagnosed allergic in their OFC. In
effect, it demonstrates whether it is possible to terminate OFC
earlier, and reduce the overall risk of anaphylaxis or other severe
reactions. From the time-gain factor, the number of subportions
which would retrospectively not have been administered can be
calculated and this number is expressed as a percentage saving
in relation to the total number of subportions administered to
the allergic subjects.

III. RESULTS AND DISCUSSION

A. Sensitivity and Specificity

The subject-independent allergy detection classification sys-
tem designed here correctly classified all nonallergic subjects
(100% specificity). The effect of being diagnosed allergic by
clinicians results in that the subject will have to continuously
avoid consuming and coming into contact with the food type
they were tested against. This avoidance yields a definite and
measurable effect on the quality of life of not only the subject
but also their immediate family. The clinicians who will use
this platform as a diagnostic decision support tool concluded
that all our classification systems should minimize these viola-
tions on the quality of life. Therefore, obtaining specificity of
100% was deemed most critical feature of the platform. This
constraint was enforced both in the parameter selection routine
and the subject-independent performance assessment routine. In
this context, the significance of the developed fully automated
system is indicated by the fact that the classification accuracy
of allergy detection can be equivalent (and sometimes superior,
see next section) to the current means of allergy diagnosis.

Sensitivity is also a very important metric, and a value of 80%
was obtained. This is also a significant result as it indicates that
the majority of subjects can be classified accurately even under
our imposed constraints.

Fig. 4. Demonstration of time-gain (Subject 11).

Fig. 5. Illustration of the time saved by the allergy detector.

B. Time Gain

Overall, from all the allergic subjects in the dataset an average
time gain of 17 ± 19min (with a median value of 12 min) is
obtained, which increases to 22 ± 18min when considering only
the 12 subjects who were correctly classified by the developed
detector.

Fig. 4 shows how the developed allergy detection platform
identifies allergy before the reaction manifested. In this figure,
the blue signal trace is the likelihood that the HRV features be-
long to the background class. The red rectangles are the times
when the subject underwent a checkup by the allergist, the black
horizontal line is the fixed threshold which is a function of sub-
ject independent n and d parameters, and subject adaptive µ and
σ parameters computed on the background data are highlighted
in blue. The red markings on the likelihood are the points which
satisfied the allergic classification criteria. The test was termi-
nated at the 85th min, and the subject was diagnosed by the
allergist as being allergic to the allergen.

It can be seen from this example in that the subject is classified
allergic by the system developed here approximately 40 min
sooner than the challenge was concluded by the allergist.

Fig. 5 plots a bar chart of the challenge times and the time
gains. In this figure, the sections of the bars which are filled
in green indicate the time gains which were obtained for the
allergic subjects. This figure shows how allergy can be classified
early by the developed routine. The best time gain was obtained
by Subject 13. Shortly following this subject’s initial dose, the
HRV features began to display signs of allergic signature. This



Fig. 6. Example of ectopia with Subject 20.

continued for nearly 70 min until the test was finally concluded
after 100 min.

In total, 108 subportions of the foods were administered to
the subjects, and 41 of these were administered to subjects who
were ultimately diagnosed allergic to the food they were tested
against. It is worth noting that if the allergy detection framework
presented here was used, 12/41 of the subportions administered
to the allergic subjects (≈30%) need not have been consumed.

C. Robust Classification

It was observed that the system was robust toward ectopia,
as in the case with Subject 20. Fig. 6 shows an example of the
ectopic beats for this subject. The top of the figure plots Subject
20’s beat-to-beat heart rate over a 10-s time period, and the bot-
tom plot displays the ECG trace with the automatically extracted
QRS points. The subject’s resting HR can be seen to be ≈100
BPM, and rises to ≈200 BPM during ectopia between seconds
2745 and 2746. This results in five successive HR calculations
of ≈107, 36, 247, 144, and 56.

The abnormal variance observed from Subject 20 (who was
diagnosed nonallergic during their OFC and by the classification
platform) reflects the challenging task of separating allergic and
nonallergic subjects with HRV features. While it could be stated
that the mean heart rate over an epoch may not significantly be
affected by this, it must be noted that other features (for example,
standard deviation, and frequency-domain features) will more
strongly reflect these abnormalities, and it is principally these
which show the robustness of the developed detector. Indeed,
by viewing the top trace in Fig. 6, it can be seen that what was
shown in the ECG was an example of the most varied RR inter-
vals. At t = {2727, 2728, 2751, 2753, 2768, 2769, 2776, 2778}
intermediate deviations of over 25 BPM were also observed
from the instantaneous heart rate from the mean values. The set
of these will certainly contribute to a noticeable change to all of
the features and the subsequent principal components computed
in this epoch. This robustness is obtained by the combination of
subject adaptive normalization and subject-independent param-
eter selection.

Furthermore, this classification routine has been shown to
be robust toward highly disparate HRV baselines. However, for

Fig. 7. Example of invariance of the likelihood of Subject 2.

much older subjects (e.g., adults) it is believed that separate
models trained on new data would be optimal.

D. Analysis of Errors

Subjects 1, 2, and 3 showed HRV features which did not
vary due to their allergic reactions. As a result, allergy in these
subjects was impossible to detect through statistical HRV feature
analysis.

An example of the invariance of the likelihood is shown in
Fig. 7 for Subject 2. Comparing this to the likelihood trace of
Fig. 4, it can be seen that the noticeable and sustained departure
from background likelihood levels that are present in Fig. 4 are
not present in Fig. 7 for Subject 2. It can be seen here that
statistical modeling of HRV features is not capable, in some
cases, of detecting allergy, and that the likelihoods obtained
can be no more varied than background levels. In fact, this and
previous works [9] [10] have been the first to demonstrate this
clinical discovery in an objective manner.

E. Consistency of Parameter Selection

Due to the LOO parameter selection routine, a different set
of classification and postprocessing parameters are obtained for
each subject. However, for each of the splits, consistent param-
eters were selected. For example, the same PCA and GMM
parameters were chosen in 20 out of 24 cases. These parameters
can be selected from a possible combination of 30 options. How-
ever, similar parameters are chosen 22 out of 24 instances, which
presents remarkable consistency considering the search space
here is of the order of 1500 possibilities (382). This consistency
suggests that the signatures of allergy consistently identifiable
from the HRV, even among different age groups.

IV. LIMITATIONS AND FUTURE WORK

Although LOO is known to be a robust predictor of perfor-
mance obtainable on future datasets, blind testing on an indepen-
dent larger dataset with all parameters fixed would undoubtedly
provide complementary information about the model behavior
and in particular its robustness to system setup permutations.
This pilot study results presented here are novel and consis-
tent which justifies future research into this area, which will
encompass a wider scale validation study.



This study has focused in obtaining classification which
would be appropriate for use in clinical allergy tests and as
a result obtaining 100% specificity was the most critical aspect.
As a consequence of this restriction, it was not possible to obtain
sensitivity of over 80%. This is, however, a specific constraint of
our application, and it is possible to obtain higher sensitivities
if lower specificities were tolerable.

Subsequent research in this area will target characterization
of the HRV features during allergic events. It has not before been
possible to separate the normal (i.e., background) HRV features
from the allergic features as no temporal annotations were previ-
ously available. Since the developed system can provide signal
segmentation of background and allergic data, further statisti-
cal inference can now be made about the system behavior and
relevance of the chosen features.

The use of one-class support vector machines will be inves-
tigated to assess benefits of discriminative modeling for allergy
detection. The applicability of model-adaptive techniques in
contrast to postprocessing parameter adaption will also be in-
vestigated.

V. CONCLUSION

Food allergy reactions provoked by diagnostic OFC can be
detected and separated from the nonallergy cases by means of
statistical HRV analysis and classification.

It was shown that with the proposed allergy detection sys-
tem, allergy can be detected on average 17 min sooner than the
current state of clinical art. This time saving can be represented
as a saving of ≈ 30% of the doses administered to the subjects
who were diagnosed allergic, and this introduces the possibility
of reducing exposure to the allergen and administering antihis-
tamines early which could reduce (and even eliminate) allergic
reactions for some subjects.

The current state of clinical art of allergy diagnosis is the
OFC, but by the methods outlined in this paper it can be seen
that the state of allergy diagnosis can be advanced with machine-
based analysis in a fully automated manner, and these benefits
are pertinent for OFCs in Ireland and elsewhere.

ACKNOWLEDGMENT

The authors would like to thank D. Daly and C. Cullinane.

REFERENCES

[1] H. Sampson, “Update on food allergy,” J. Allergy Clin. Immunol., vol. 113,
no. 5, pp. 805–819, 2004.

[2] S. Sicherer and H. Sampson, “9. Food allergy.,” J. Allergy Clin. Immunol.,
vol. 117, no. 2, pp. 470–475, 2006.

[3] C. Bindslev-Jensen, B. Ballmer-Weber, U. Bengtsson, C. Blanco,
C. Ebner, J. Hourihane, A. Knulst, D. Moneret-Vautrin, K. Nekam,
B. Niggemann M. Osterballe, C. Ortolani, J. Ring, C. Schnopp, T. Werfel,
European Academy of Allergology, and Clinical Immunology, “Standard-
ization of food challenges in patients with immediate reactions to foods–
position paper from the European Academy of Allergology and Clinical
Immunology,” Allergy, vol. 59, no. 7, pp. 690–697, 2004.

[4] N. Twomey, “Digital signal processing and artificial intelligence for the
automated classification of food allergy,” Ph.D. dissertation, Dept. Elect.
Eng., Univ. College Cork, Cork, Ireland, 2013.

[5] M. Primeau, R. Kagan, L. Joseph, H. Lim, C. Dufresne, C. Duffy,
D. Prhcal, and A. Clarke, “The psychological burden of peanut allergy
as perceived by adults with peanut allergy and the parents of peanut-
allergic children,” J. Clin. Exp. Allergy, vol. 30, no. 8, pp. 1135–1143,
2000.

[6] J. Ménardo, J. Bousquet, M. Rodière, J. Astruc, and F. Michel, “Skin test
reactivity in infancy,” J. Allergy Clin. Immunol., vol. 75, no. 6, pp. 646–
651, 1985.

[7] J. Oude Elberink, J. de Monchy, S. van der Heide, G. Guyatt, and
A. Dubois, “Venom immunotherapy improves health-related quality of
life in patients allergic to yellow jacket venom,” J. Allergy Clin. Immunol.,
vol. 110, no. 1, pp. 174–182, 2002.

[8] N. Twomey, A. Temko, C. Cullinane, D. Daly, W. P. Marnane, and J.
O. Hourihane, “Detection of heart rate variation could improve patient
safety and diagnostic yield during oral food challenge,” EAACI, 2013, to
be published.

[9] N. Twomey, S. Faul, D. Daly, J. Hourihane, and W. Marnane, “Classifica-
tion of biophysical changes during food allergy challenges,” in Proc. 3rd
Int. Symp. Appl. Sci. Biomed. Commun. Technol., 2010, pp. 1–5.

[10] N. Twomey, A. Temko, J. Hourihane, and W. Marnane, “Allergy detection
with statistical modelling of HRV-based non-reaction baseline features,”
in Int. Symp. Appl. Sci. Biomed. Commun. Technol., 2011, pp. 134–138.

[11] R. Gutiérrez, J. Campos-Garcia, W. P. Marnane, N. Twomey, and A.
Temko, “Real-time allergy detection,” in WISP, pp. 21–26, 2013.

[12] J. Oresko, Z. Jin, J. Cheng, S. Huang, Y. Sun, H. Duschl, and A. Cheng, “A
wearable smartphone-based platform for real-time cardiovascular disease
detection via electrocardiogram processing,” IEEE Trans. Inf. Technol.
Biomed., vol. 14, no. 3, pp. 734–740, May 2010.
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