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Abstract. In this paper we present a method of modulating the con-
text of data captured in smart homes. We show that we can dramati-
cally adapt their sensor network topology and that this approach can be
used to help understand various aspects of such sensor environments. We
demonstrate how, with our software, we can discover the importance of
individual sensors, clusters of sensors and sensor categories for resident
identification and activity recognition. Finally, we validate the utility of
context modulation in a number of experimental scenarios that show
how the activity recognition is a↵ected by each sensor topology elicited
by these scenarios.

1 Introduction

Activity recognition is an important area of research and is a principal goal
of many research groups [3,7,12,1,16]. Homes equipped with sensing technology
that are capable of perceiving the activities being performed are called smart
homes. In general these homes are equipped with passive sensors that do not
require direct interaction of residents. Examples of these sensors are Passive
Infra-Red (PIR) which detect movement, door sensors which identify whether a
door is open or closed, light switch sensors which report whether a particular
light is on or o↵, etc.

A critical requirement of smart homes is in the recognition of Activities of
Daily Living (ADL) [4,7]. These are of interest because certain types of smart
home may be able to interact and assist with ADLs. Assessment of ADLs can also
shed light on the well-being, independence and cognitive abilities of the residents
[4,1]. With ADL recognition tasks, it is important to find a balance between
the number of sensors (people may not accept high numbers of these in their
homes), robust classification capabilities and tolerance to faults that might occur
in deployment. However, few research groups consider all of these points because
investigating these may require that the context of already-existing data sets
are significantly modified and such contextual modifications might be di�cult
to generate.

In this paper we describe a solution to the above problem and describe a
technique that can easily manipulate already-existing smart home datasets into
representing new user-defined contexts. Such new representations can be useful
for understanding the sensor dynamics of smart homes, for building robust clas-
sification models and for assisting with transfer, multi-task and meta learning.



In our results section we demonstrate the utility of this pipeline with a number
of di↵erent experiments.

This paper presents work in progress, yet we contribute to the literature in the
following manners: 1) a powerful interface is presented which can dramatically
modify the context of smart homes and allows a) investigation of the e↵ect of
di↵erent sensor layouts or failures; b) the change the form of the classification
task; and c) feature engineering studies to be performed easily; 2) we demonstrate
how modulating data can help us understand the importance and e↵ect of sensor
densities and topologies (our system can streamline this process); 3) we state
that this work could be used in conjunction with learning algorithms so that
robust, fault-tolerant classification models may be learnt from the data; and
4) our interface can simulate and quantify the e↵ect of a number of scenarios
that residents may insist on in deployment studies.

2 Context Modulation

We define context modulation as the act of modifying and adapting data in such
a way that new data representations are obtained. These new representations are
illustrative of original (user-defined) contexts. In this way, context modulation
acts on the data itself and can generate new versions of existing datasets which
depict new properties according to the parameters specified by an operator.

Employing multiple independent datasets is the traditional way to learn over
multiple contexts. Our context modulation technique, however, generates new
representations of the same datasets and these permit us to learn new lessons
from the set of contexts individually and collectively. These lessons are interest-
ing as they illustrate the e↵ect of context change on a dataset with the same
application domain target.

Throughout this paper we discuss context modulation with reference to ac-
tivity recognition in a smart home. However, even under this application, context
modulation can be applied to a number of di↵erent domains, and we will show
later that it is useful for the software-defined assessment of sensor topologies,
assessing importance of sensors for activity recognition, and it may also be used
for learning robust classification models.

2.1 Motivation

We first motivate the idea of context modulation as an approach for simulating
fault-like sequences that might occur in a smart home. In general, smart home
datasets are “clean” (i.e. all sensors are always operational). However, this is
an idealised view and may not always occur in a realistic deployment. Context
modulation can provide protection against such scenarios by modulating train-
ing data in such a way that fault-like scenarios have already been contemplated
by a learning algorithm. Our software can also expose the capability of modi-
fying sensor and label topologies in ways that can translate the problem to a
more appropriate form. For example, some smart home datasets are presented



as single-task classification problems to learning algorithms, but they may be
more appropriately viewed in a multi-task setting.

Sensor Failure For any given activity, when a sensor has failed the sequence of
events that would normally be perceived will likewise change. This poses a prob-
lem for activity classification models as they generalise by learning correlations
between sensor activations and labelled activities.

Within the remit of a smart home, there exist a number of ways in which
a sensor may fail. The sensor hardware may simply break, which might occur
given the humid environments in a kitchen or shower in the bathroom. Alterna-
tively, the battery of the sensor may fail. Sensors are not generally powered by
mains electricity for reasons of expense, availability of power points and user-
acceptance. In order to communicate to a database, the sensor must broadcast
data wirelessly, and this is quoted as being the single most significant burden on
the power budget in many applications [14].

An interesting case arises with PIR sensors. After replacement of batteries,
for example, or perhaps if one has been knocked o↵ alignment by a resident,
the orientation of the sensor may be di↵erent and its field of view may now be
focused over a new area. If the positioning of these sensors is critical for activity
recognition, it is possible that classification accuracies may be adversely a↵ected
by this change of orientation. An example of where the PIR positioning may be
important is within a kitchen where a number of activities (such as washing up,
cleaning and cooking) take place in a confined area.

Sensor Density There is an intricate trade-o↵ between the number of sensors
that are found within a smart home and the user-acceptance of the presence of
these. This is most important for projects whose eventual goal involves wide-
scale deployment. In general, engineers will prefer to populate smart homes with
as many sensors as possible in order that the most expressive description of
activities is obtained. This high sensor density introduces redundancy to the
testbed1, but few studies investigate whether such high sensor densities would
be accepted by users, and so it is possible that deployment-centred projects may
limit recruitment populations with increasing numbers of sensors.

Further to user-acceptance considerations, few studies have investigated whether
high sensor densities are required for accurate activity recognition. One could
investigate this question with feature-selection methods to determine the sets
which are most and least informative. However, this approach does not permit
the researcher to investigate the e↵ect of introducing new kinds of sensor that
could be chosen to take the place of, perhaps, five of the current sensors, for
example, and we will see later in this paper how this might be achieved with our
software.

1 Testbed are smart homes which are specifically designed for data capture. Residents
may live in these locations for a period of time, but in general this will not be their
permanent place of residence.



Table 1: Example of a (modified) sensor event file. The activities are identified
by the final two columns.

Date/Time Sensor ID Sensor State Label Begin/End

2009-02-02 07:15:16 m 16 on R1 Work begin
2009-02-02 07:15:22 m 34 off · ·
2009-02-02 07:15:23 m 22 on R2 Sleep begin
2009-02-02 07:15:28 m 26 on · ·
... etc ...
2009-02-02 07:20:55 m 22 on · ·
2009-02-02 07:20:56 m 43 on R2 Sleep end
2009-02-02 07:21:00 m 13 on · ·
2009-02-02 07:21:03 m 19 off R1 Work end

Transfer and Multi-task Learning When learning activity models from a set
of testbeds the models must be able to cope with di↵erent floor plans of homes.
Researchers in multi-task and transfer learning have stated (e.g. in [2]) that
the best results are often obtained by sharing parameters between the di↵erent
testbeds, tasks and resources. In order to do this, each testbed must translate
their events to a common language that has been agreed upon. As an example
of such a common language, a motion sensor with the identifier m 17 which is
found in a kitchen may be replaced with m kitchen. While this is a trivial
example, we show that this idea can be used to advantage in later sections.

2.2 Implementation and Utility

In this section we discuss a number of details about the implementation of our
context modulation software and how all of the considerations in Section 2.1
have been addressed in our implementation. In brief, this section describes four
ways by which we can alter the context of datasets under the guidance of a user.
Each method can be used in isolation or in combination with others.

Input Sensor Event File Our sensor modulation technique is capable of gen-
erating data which can address the points raised in Section 2.1. In order to do
so, our data generation algorithm reads from sensor event files. An extract of
one such file is shown in Table 1. The first three columns of the table give the
date/time, sensor identifier and the state of an event. The set of possible sensor
states of doors are selected from the set {open, closed} while motion sensors will
select from {on, o↵}. The Label and Begin/End columns of the table identify
the current activity being performed and the start and end points of this activ-
ity. The naming convention of activities, e.g. R1 Work, states that the resident,
identified as R1, is working.

Multiple residents can perform activities in parallel in a smart home (e.g. one
resident may be working while another sleeps). When this occurs the labelling



associated with new events is ambiguously reported, as these files e↵ectively
state that “when this event was recorded, these 2 activities were co-occurring”
so no one activity is specified as being responsible for causing new events. As
the class membership is not explicitly specified the annotations are somewhat
ambiguous and weakly labelled (i.e. this event belongs to one element of this
set of activities, and precisely which element is not known; see Table 1). The
activity recognition research community can classify these problems in a multi-
class manner [2] because even though multiple activities may occur in parallel,
each event can only be generated by one activity from the set of the possible
candidates.

Sensor Deletion and Merging Two main types of feature modulation can
be performed on the sensor events. These modifications are defined by regular
expressions within appropriate Extensible Markup Language (XML) files.

If a user wished to remove sensor m 35, for example, either to simulate a fail-
ure of the sensor or to introduce a persistent “blind spot” in the sensor topology,
this may be done by specifying ˆm 35$ within the sensor removal XML file. The
software will then remove each event that matches this expression. Looking at
Table 1 it can be seen that if the software simply ignored rows that satisfy this
expressions, the beginning of the R1 Work activity would likewise be removed.
Therefore, when this situation occurs the software will first “remember” the
opened activity before shifting on to the next row of the data file.

Likewise, if one wished to merge sensors m 35 and m 34 and label these with
a new “super” sensor identifier, m bedroom 1, one may do so by specifying the
following regular expression: /ˆm (34|35)$/m bedroom 1/ and if no match is
found the original string is returned. This procedure simulates the act of adding
“new” sensors to the testbed which exhibit di↵erent properties from the original
sensors, e.g. it may simulate PIR sensors with wider fields of view. This approach
can also be used to assess the e↵ect of investigating lower sensor densities for
activity recognition. It is possible to use both deletion and merging expressions
together and Algorithm 1 shows how this is achieved.

Feature Engineering Algorithm 1 provides an interface to modify the sensor
activations of a dataset which can yield di↵erent user-defined sensor contexts.
However, it also facilitates feature engineering on the full set of features that are
extracted from the sensor event files. For example, it is possible to extract the
day of the week and hour of the day from the date and time column of Table 1.
Our software permits users to easily modify these other features (as opposed to
the sensors that were a↵ected previously) by specifying regular expressions. For
example one may define breakfast time as occurring between 7 and 10 AM. This
can be extracted with /ˆ[7-10]am$/breakfast time/. Similarly, identifi-
cation of weekends can be specified by /ˆ(saturday|sunday)$/weekend/.
It is also possible to generate extra features with a regular expression such as
/ˆ(saturday|sunday)$/weekend,\1/ which presents both the original day
and the weekend as features.



Algorithm 1: Algorithm for processing sensor event files.
Input: A sensor event file, D, a set of deletion regular expressions, d and a set

of merging regular expressions m.
Output: The processed dataset x

1 x empty list of tuples
2 a  {} // Set of open activities
3 for i 1 to |D| do
4 ri  ith row of D (quantised if necessary)
5 if ri defines start of new activity // e.g. rows 1/3 in Table 1
6 then

7 a a [ activity

8 else if ri defines end of activity // e.g. rows 7/9 in Table 1
9 then

10 a a\activity
11 if inDeletionSet(ri,d) then

12 continue

13 bri  replaceSensorID(ri,m)
14 if inDeletionSet(bri,d) then

15 continue

16 ai  a // The set of possible activity labels responsible
for ri

17 Add the tuple (bri,ai) to end of list x

18 return x

Our software will automatically detect real-valued features and an interface
is provided which allows the user to easily quantise these data into user-defined
bins.

Label Engineering Finally, the algorithm may operate on the labels. This is
useful for a number of reasons. We can see from Table 1 that the data files are
annotated with resident identifiers and activity labels, e.g. R1 Work specifies
that the resident, R1, is working. Learning activities with many residents has
been treated as a single-task multi-class problem, but it may be more naturally
represented in a multi-task learning setting where the resident index and activity
define each task. Our data generation software permits a user to define regular ex-
pressions for the activity labels. For example, by applying /ˆ(R\d+) (.⇤?)$/\2/
to the labels, the dataset can be anonymised (i.e. resident identifiers are removed
from the activity labels). Models learnt on this will learn to only classify activities
and not the residents. Similarly /ˆ(R\d+) (.⇤?)$/\1/ will remove the activity
from the label yielding a classification problem for identifying the user by their
interactions with the sensors.

Anonymising the labels, when applied to a multi-task learning approach, can
be seen as “variable sharing” which is a method that can reduce the risk of
over-fitting by reducing the number of learnt parameters. Indeed, smart-home



Fig. 1: Floorplan and sensor layout for the twor.2009 dataset. Sensors are
marked as circles.

based activity recognition is most frequently tackled as a sequential classification
problem (see later). Using the terminology of Hidden Markov Models (HMMs),
this means that emission and transition matrices must be learnt. Given a fixed
number of features the size of the emission matrix scales by O (|Y|), where Y

is the set of possible labels. Likewise, the transition matrix scales by O

⇣
|Y|

2
⌘
.

Therefore, by anonymising a two-resident label-space its size is halved and the
transition matrix reduces in size by a factor of four.

Label modifications are also necessary for transfer learning tasks where it
is important that the labels are consistent over all testbeds. With the Centre
for Advanced Studies in Adaptive Systems (CASAS) datasets2 [3], for exam-
ple, activities will labelled di↵erently depending on the testbed investigated.
Specifying expressions such as /(cooking|meal preparation)/cook/, for
example, will allow the dataset labels to be represented in a consistent language.

3 Experiments

3.1 Dataset

We use the CASAS datasets for our experiments. CASAS is a research group
which primarily focuses on learning activity models for smart homes. For our
analysis we investigated the twor.2009 dataset3. This particular dataset was
chosen because it poses a di�cult multi-class and multi-resident problem. The

2 CASAS homepage: http://ailab.wsu.edu/casas/
3 This can be downloaded from: http://ailab.wsu.edu/casas/datasets/twor.2009.zip



yi-1 yi yi+1

xi-1 xi xi+1

(a) Linear-chain HMM.

yi-1 yi yi+1

x

(b) Linear-chain CRF.

Fig. 2: Graphical structure of linear-chain models.

data was collected over a continuous period of three months and is built from un-
scripted, multi-resident home-living scenarios. In total, 13 activities are labelled,
eight of which are personalised to specific residents.

The testbed floorplan and sensor layout are shown in Figure 1. This testbed
consists of six families of sensor: 1) 51 motion sensors; 2) 9 door sensors; 3) 7
light switch sensors; 4) 2 water flow sensors; 5) 1 stove-top burner sensor; and
6) 1 item sensor. The motion sensors are PIR sensors that are distributed evenly
throughout the testbed, and these are found at intervals of approximately 2
metres. Door sensors can be found at the entrances to the house, on the doors
to rooms, and on the cupboards in the kitchen and wardrobes in the bedrooms.
The water and stove-top sensors are found in the kitchen; these are Analogue
to Digital Converter (ADC) sensors that measure the rotation of a fan or the
temperature of a thermocouple.

3.2 Conditional Random Fields

For this work Conditional Random fields (CRFs) [10,15,8] were used for activity
classification. CRFs are a sequential-based classification model that learn the
conditional distribution of label sequences. As we require that our model only
classifies data CRFs were selected over alternative models, such as HMMs, be-
cause they directly model the conditional distribution, p(y|x), whereas HMMs
model the joint (generative) distribution, p(y, x). Furthermore, CRFs may utilise
feature information from more than one single time step when predicting activ-
ities. With HMM models, however, such treatments are di�cult to model and
may violate the independence assumptions due to their methods of factorising
probabilities [9,15].

In this work, we restrict ourselves to linear-chain CRFs. Let us formalise our
notation by defining the training data, x, as a sequence of N sensor events, and
y to be the sequence of associated activities. Each xi in x has K attributes and
xi,k identifies the kth attribute of the ith example. The graphical structure of
linear-chain HMMs and CRFs are shown in Figure 2. Figure 2a shows the HMM
structure where we can see that predictions for each time-slice only consider xi

and yi. However, Figure 2b, illustrating the graphical structure of a CRF, shows
how each yi may draw from the whole sequence of x to classify new examples.

The general model of the CRF is defined by
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is called the partition function and it normalises the output of the CRF to a
true distribution by summing over all combinations of y0, and

Fj (x,y) =
NX

i=1

�jfj (yi�1,yi,x, i) (3)

is the weighted sum of feature functions, fi, over the sequence. Each feature
function takes as arguments the previous and current labels (yi�1, yi), the full
sequence of observations (x) and the current position of the sequence (i). The
reason for the final argument is because each prediction can depend on the entire
sequence of observations, x, and therefore the feature functions must be informed
about the current position being labelled.

In general, the output of these feature functions is binary. An example of a
feature function for activity recognition is given below (where u, v 2 Y):

fj (u, v,x, i) =

(
1 if u = cook ^ v = cook ^ xi�3,k = m kitchen

0 otherwise
(4)

This returns true if there was motion in the kitchen three time steps pre-
viously, and if the previous and current labels were both cook. The feature
functions can be more expressive than sensor activations taken in isolation, as
they may consist of a conjunction of tests that span multiple time steps.

Each feature function has a weight, �j , associated with it and these weights
are learnt through optimisation procedures such as Stochastic Gradient De-
scent (SGD) or other quasi-Newtonian methods [11]. In each case, the partial
derivative of the likelihood function, L (D), is taken with respect to the jth

weight which yields

�

��j
L (D) = bE [fj ]� E [fj ] , (5)

where bE [fj ] is the expected value under the empirical distribution of the feature
fj , and E [fj ] is the expected value under the model distribution of fj [9]. This
will equal zero when learning has converged, and so the CRF will have learnt a
model in which bE [fj ] = E [fj ], which implies that the model has been calibrated



against the training data. Introducing a Gaussian prior to the weights with a
bandwidth �2 yields

�

��j
L (D) = bE [fj ]� E [fj ]�

�j

�2
. (6)

We choose �2 from a cross-validation subset of the training data which is
never directly used to learn parameters or during testing.

3.3 Features

We use similar features to those used by other researchers in activity classification
in smart homes. We extract five categorical features from the sensor data. The
features are 1) the day of the week (7 possible values); 2) the hour or the day (24
possible values); 3) the second-to-last sensor event; 4) the previous sensor event;
and 5) the current sensor event. The number of possible values in the last three
attributes above depends on the user-specified deletion/merging configuration.
Without any deletion/merging expressions 71 sensors are considered.

3.4 Experiments

We perform two types of experiments on the twor.2009 dataset. These are
summarised below:

– Activity recognition. Four di↵erent scenarios are investigated:
• No sensors are removed, and all activity labels are preserved (termed
allSens allAct).

• No sensors are removed, activity labels are anonymised (allSens someAct).
• Motion sensor activations are merged at the room-level4, all activity
labels are preserved (someSens allAct.).

• Motion sensor activations are merged at the room-level, labels are anonymised
(someSens someAct).

– Sensor removal. Three di↵erent scenarios are investigated:
• Door sensors are removed (no door)
• Light sensors are removed (no light)
• Door and light sensors are removed (no door or light)

3.5 Performance Assessment

Typically, researchers assess performance on the basis of positive predictive rates
[3,5,13]. We use this metric here, but also discuss others. As is shown in Table
1, the dataset annotations are marked with begin and end statements. When
multiple activities are co-occurring, it is unknown exactly which activity is re-
sponsible for generating sensor events as this is not explicitly annotated in the
database. We, therefore, define the following metrics. The prediction of the ith

example, ỹi, is deemed to be a

4 With reference to Figure 1, this means that the sensors m (15|16|17|18|51)
would be converted to m kitchen. We define eight rooms in total.



– True Positive (TP) if ỹi 2 ai (ai is assigned in Line 16 of Algorithm 1); and
– False Positive (FP)if ỹi 62 ai.

We report our accuracy with the precision metric

Precision =

P
TPP

TP +
P

FP
(7)

which can be interpreted as the probability that a predicted label of the ith

instance of a dataset is in the set of open activities, ai, at that time. This
is a slightly ambiguous metric because it reports one precision metric for all
activities, and because the activity that is truly responsible for the event is
unknown.

We also report the False Negative (FN) metric. Given an activity, a, which
spans the event indices l  i  u, FNs are counted if there exists no i over the
duration of the activity where ỹi is predicted as a. The FN rate is then reported
by normalising the number of FNs counted by the total number of activities
in the dataset. The metric can be interpreted as follows: given that an activity
a occurred, the FN rate gives the probability that a is never predicted by the
classification model.

4 Results and Discussion

4.1 General Accuracy

Figure 3 shows an example of activity prediction on smart home sensor data5.
In this figure, the ground truth labels are shown in the upper image and the
predicted activity labels of the CRF are shown in the lower image. The colour at
any time point is representative of the label that is predicted by the classification
model. In the upper image when two colours are shown (e.g. region a, b, c, and d)
this indicates that two residents are performing concurrent activities. This image
shows good visual correspondence between the ground truth and the predicted
activities. Some classification errors can also be seen in the region marked as b
and d.

We can also see, at the regions marked by a and c, that the predictions can be
relatively inconsistent and “jump” between the labels watch tv/meal preparation
in region a, and between work/sleep in region c. The reason for this behaviour
is because multiple residents are in the smart home performing di↵erent activi-
ties at this time. Predictions naturally “jump” between activities at these times
because sensor events are dominated, for short time periods, by one activity. The
dominant activity then changes, recorded events reflect this and the predictions
will then change. Region d marks a FN of the study label.

5 This image is generated using anonymised activity labels in order to increase the
clarity for the reader. Similar images can be obtained with non-anonymised data,
but the number of labels will have increased.



Fig. 3: Demonstration of the ground truth activity labels (top) and predictions
from the CRF (bottom). Co-occurring activities are seen when multiple colours
are seen the upper image. Regions marked with a and c identifies co-occurring
activities, b shows mislabelled activities and d marks an FN activity.

4.2 Activity Recognition

Table 2 shows the results of the activity recognition experiments described in
Section 3.4. In general it can be seen that good classification accuracy is obtained;
the precision of the default label is approximately 36%. In all cases the default
label accuracy is significantly improved upon. The results show that when the
activity labels are anonymised the classification accuracy of activity recognition
rises by 9%. This is intuitive because these activities should “look” the same
from a sensor perspective regardless of which resident performed the activity.
Indeed, it may be very di�cult to attribute resident identification to activities,
and perhaps specific identification sensors are necessary to achieve this. This is
suggested by the fact that in all cases the someSens precision and FN metrics
are inferior than the allSens precision results.

The results of these experiments suggest that, when it comes to activity recog-
nition, recognition gains can be obtained by classifying anonymous activities. By
performing this simple task we see that precision metric rose by approximately
9%, which is a reduction in error of approximately 35%. However, it is not sur-
prising that the best results are always obtained when all sensors are considered,
as our room-based reduction technique was relatively aggressive and yielded a
reduction in overall precision of about 12%.

Interestingly, we can see from the FN column in this table that when the
number of sensors in the rooms are reduced the FN rate rises by a factor of 2-3.
At these rates approximately one activity in five are never classified. This can be
understood by the fact that in the twor.2009 testbed residents can perform



Table 2: Precision and FN rates for the first experiment.

Experiment Name #labels #sensors Precision FN Rate

allSens allAct 13 71 76.2% 8.6%
allSens someAct 9 71 85.2% 6.7%
someSens allAct 13 29 64.0% 20%
someSens someAct 9 29 71.1% 18%

Table 3: Precision and FN rates for the second experiment.

Experiment Name #labels #sensors Precision FN Rate

no doors 9 62 82.9% 9.7%
no lights 9 64 83.6% 10.8%

no doors or lights 9 55 81.7% 9.8%

multiple activities in one room, and with a reduced number of sensors a less
expressive description of the room is obtained. We can also see that FN rates
seem to be consistently reduced when the activities have been anonymised.

4.3 Sensor Deletion

Table 3 show the classification accuracies that are obtained when door and
light sensors are removed. For this task the activity labels were anonymised
as this configuration was found to yield the highest precision in the previous
allSens someAct experiment.

It is very interesting to see that both the precision and FN rate are a↵ected
by less than 4% in comparison to the allSens someAct experiment. This
result is quite surprising in the no door experiment because it was assumed
that interaction with door sensors would have been important for discriminating
between kitchen-centred events such as cooking and washing, for example.

The precisions and FN rates for these three experiments are relatively sim-
ilar to one another and indeed are similar to the results obtained with the full
complement of sensors. This indicates that, when comparing the results to those
obtained in the someSens * experiments, light and door sensors do not appear
to be as critical as motion sensors for activity recognition.

4.4 Discussion

The results presented here shed light on the relative importance of the variety
and density of sensors found within smart homes. In Section 4.2 it was seen
that reducing the localisation accuracy of the motion sensors reduced the overall
precision by approximately 13% and that the FN rate rose to 20%. This result



strongly suggests that a high density of motion sensors is very important for good
recognition of activities and for ensuring low FN rates in the dataset investigated.

The context modulation software that we developed is capable of easily gen-
erating new and diverse contexts of the same testbed. We demonstrated this
with a number of experiments where the sensing topology of the testbed has
been dramatically modified. In Section 4.3, for example, two classes of sensor
were completely removed from consideration by specifying a number of regular
expressions in a text file. Even with these, potentially näıve, sensor modula-
tions, however, we were still able to observe interesting trends on the predictive
performance of the classification routine.

It is easy to imagine other scenarios that might be investigated. For exam-
ple, a particular resident may not wish to have sensors in their bedrooms or
bathrooms for reasons of privacy. Even though the sensors that we use here
are non-invasive and should not make residents feel uncomfortable, our context
modulation framework easily yields the ability of defining scenarios which will
help us understand the e↵ect that these constraints might have on activity recog-
nition. Furthermore, quantitative assessment of these scenarios can be achieved
without having to redeploy new sensor topologies in a smart home or having to
gather new data.

5 Future Work

The work described in this paper is still in progress and future work will focus
on the following. We will use context modulation as a critical node between
the database and learning algorithms. We will allow training instances to be
replicated, and each replication can have a randomised context modification.
Presenting these to the learning algorithm, perhaps in a bagging or boosting
fashion [6], should facilitate the learning of more robust classification models.

Furthermore, we will adapt the data generation and classification pipelines so
that multi-task datasets can easily be learnt. Currently we are able to generate
multi-task data, and we hope to introduce a mechanism that will permit multiple
tasks to be learnt concurrently and, perhaps, to utilise meta classification on top
of this. Finally, we hope to release this software to the open source community
once it has been completed6.

6 Conclusions

We presented a software tool that performs context modulation of sensor events
and provides a common interface for performing a number of machine learning
tasks (e.g. feature construction, multi-task data generation, feature elimination
etc.), and all of this is achieved with little e↵ort on the part of a user. This
tool o↵ers the opportunity to investigate and understand di↵erent aspects of the
sensor configuration. When applied to activity recognition in the smart home

6 Links to the software will be found at: http://www.irc-sphere.ac.uk/



we showed that modulating the context of the data itself can help us under-
stand some aspects of the intricate relationship between the sensor set and the
performance of activity recognition algorithms. Most importantly this process is
streamlined by our software, which accelerates the understanding process.

The scenarios that were investigated in this paper o↵er a number of interest-
ing findings, even given the relatively simple context modulation utilised here.
In our experiments, we show that the most important sensors appear to be mo-
tion sensors, and that a higher densities of these yields highest precision and
lowest false negative rates. We found that an absence of door and light sensors
seem to a↵ect activity recognition only marginally. We also conclude that iden-
tification of residents in smart homes is a di�cult task and we speculate that
only considering environmental sensors in isolation for this task is, perhaps, not
optimal. Our software also provides the latitude to easily redefine datasets in
many settings, and that it could be used to generate new data that might help
to learn robust and fault-tolerant activity models for smart homes.

On the basis of our experiences using the context modulation software, we
envisage that it will greatly facilitate deeper understanding of the relationship
between sensors and prediction of activities of daily living in smart homes.
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