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Abstract There is no uniform approach in the literature for modelling sequential correla-
tions in sequence classification problems. It is easy to find examples of unstructured models
(e.g. logistic regression) where correlations are not taken into account at all, but there are
also many examples where the correlations are explicitly incorporated into a – potentially
computationally expensive – structured classification model (e.g. conditional random fields).
In this paper we lay theoretical and empirical foundations for clarifying the types of problem
which necessitate direct modelling of correlations in sequences, and the types of problem
where unstructured models that capture sequential aspects solely through features are suf-
ficient. The theoretical work in this paper shows that the rate of decay of auto-correlations
within a sequence is related to the excess classification risk that is incurred by ignoring the
structural aspect of the data. This is an intuitively appealing result, demonstrating the inti-
mate link between the auto-correlations and excess classification risk. Drawing directly on
this theory, we develop well-founded visual analytics tools that can be applied a priori on
data sequences and we demonstrate how these tools can guide practitioners in specifying
feature representations based on auto-correlation profiles. Empirical analysis is performed
on three sequential datasets. With baseline feature templates, structured and unstructured
models achieve similar performance, indicating no initial preference for either model. We
then apply the visual analytics tools to the datasets, and show that classification performance
in all cases is improved over baseline results when our tools are involved in defining feature
representations.

1 Introduction

Structure modelling permits target variables to collaborate so that ‘informed’ decisions
about a set of random variables are based on a collection of beliefs linked together in a
graphical structure [1,2]. In such frameworks, instances can be a list of vectors each relating
to a single target variable in the graph. For classification problems, a localised belief about a
particular target variable is influenced by the beliefs of neighbouring nodes, which, in turn,
have been informed by their own neighbours. Marginal distributions in a structured model,
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therefore, are explicitly influenced by all possible target permutations over the graph. Intrin-
sically, this can be expensive to compute, but, in some applications, superior classification
performance admonishes time complexity.

Some applications which have benefited from structural modelling include: computer
vision [3] (e.g. scene recognition, item tracking), Activity Recognition (AR) (e.g. energy
expenditure estimation), Natural Language Processing (NLP) [4] (e.g. text chunking, infor-
mation extraction), biomedical signal processing [5] (e.g. seizure detection) etc. With many
of these, structure would be employed to model the temporal/sequential (and sometimes
spatio-temporal) aspect of the data. In many of these example applications, however, the au-
thors do not incorporate structure in the modelling pipeline, and so the structure is assumed
to be approximated by the extraction of expressive features, although few researchers make
this statement explicitly. The abandonment of structure might be considered sub-optimal for
many of these applications, yet some are considered ‘solved’ with the unstructured model
choice.

We can loosely view the structured and unstructured classifiers as being model- and data-
driven respectively; model-driven can be seen to fit dynamics of the problem and data-driven
can be seen to estimate a predictor for the problem with less attention given to modelling
structure. The choice of approach is largely subjective and various practitioners approach
the problem with both techniques. For example ‘tracking by detection’ [6] is a technique in
computer vision where each frame in a video is considered independent, whereas filtering
techniques, e.g. the Kalman filter [7], can be applied to a history of predictions to estimate a
trajectory to project tracking to future frames.

Despite the number of researchers that study structured problems, we cannot find spe-
cific studies where the efficacy and utility of both choices are compared over multiple clas-
sification domains. Some communities are satisfied with using static models, while others
seem to insist on using structured models (e.g. many NLP applications).

This paper makes the following contributions. In section 3 we discuss our methodology
and approach. In this section we also demonstrate how Logistic Regression (LR) may be in-
terpreted as a special case of Conditional Random Field (CRF) models. These are expanded
upon with theoretical analyses in section 4 where we derive bounds on the excess risk intro-
duced when applying unstructured models to sequential problems. In section 5 we describe
the datasets and features used in our analyses, and we present our results in section 6 where,
for a number of datasets, we show that equivalent classification performance is achieved
for structured and unstructured models alike. The theoretical and practical details of mod-
elling sequences are both emphasised in detail throughout this paper. In particular section 6
will introduce methods which relate our theoretical findings with practical experiments and
we demonstrate that these can guide feature extraction routines to obtain improved classi-
fication performance for the datasets we considered. Finally, we discuss our contributions
further and conclude in section 7.

2 Related Work

In this section, we discuss work that relates the use of structured and unstructured classifi-
cation tasks which we outline from both practical and theoretical perspectives. In general,
CRFs can be applied to any number of application domains, including NLP, bioinformatics,
activity recognition, computer vision, etc. yet many practitioners in these areas have found
that unstructured classification models can perform adequately. Examples of such applica-
tions include activity recognition [8] (with specific reference to the Microsoft Kinect [3])
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and biomedical applications (e.g. brain [5] and heart [9]). This is a principal motivation of
our work, as methods have been derived for a number of application domains that are both
structured and unstructured.

In [10], the authors propose a two-stage CRF model. Their approach first learns LR or
Support Vector Machine (SVM) models which are subsequently used as feature functions
(see later) for the eventual CRFs. This work shows that CRFs with such feature functions
tend to converge quickly due to the embedding of their discriminative characteristics.

Theoretical analysis of statistical learning has largely focused on Independent and Iden-
tically Distributed (IID) datasets, and this is a feature of many publications [11]. In [12],
the authors proposed the use of SVMs for forecasting on unknown ergodic systems. It was
proved that with noisy observations, SVMs that incorporate Radial Basis Function (RBF)
kernels will learn the best forecaster under alpha-mixing constraints when the decay of cor-
relations for Lipshitz-continuous functions is summable.

In [13], asymptotic theory relating to the consistency of linear-chain CRFs is introduced
(with the assumption that the feature functions are known and that the weight parameters
are not). This is used to describe parameter learning convergence of a sequence as its length
tends towards infinity with maximum likelihood estimators. This required a definition of
CRFs for infinite sequences that are defined by the limit distributions of conventional linear-
chain CRFs. One of the main questions the authors answer is the quality of model identifi-
cation in the presence of noisy data, and bounds were derived.

The investigation of infinite-sequence CRFs was continued in [14] where theoretical
considerations for online prediction are discussed. The work is motivated by the observa-
tion that marginal probability estimates can only be computed once a full data sequence has
been observed, and this implies that the computation of exact marginal probabilities in on-
line settings is not possible. The authors introduced methods of approximating the marginal
distribution and provide theoretical bounds on the error rates on the approximations that can
be calculated at run-time.

Rich notions of structure that can be captured by a first-order logical language are em-
ployed in relational learning and inductive logic programming. There, the idea of capturing
structure in features rather than in models is called propositionalisation [15,16]. This is a
more general setting than ours as it can involve an unlimited range of structure including
spatial structure [17], network structure [18] and molecular structure [19]. The advantage of
our focus on sequential data is that it facilitates a more in-depth analysis of auto-correlation
than would be possible with unrestricted logical structure (see also [20] for a study on the
effect of auto-correlation in relational learning).

Finally, we point the interested reader to a recent, complementary study on the tractabil-
ity and optimality of structured prediction for 2D grids as commonly used in machine vision
applications using a generative probabilistic model [21].

3 Concepts and Notation

3.1 Notation

In this work, we focus on non-IID sequential data. Each observation is a sequence of length
Nm and each position of the sequence is a D-vector, i.e. xm 2 RNm⇥D. Given a target label
space, Y , every sequence has an associated target vector, ym 2Y

Nm . A dataset then consists
of M observation-target pairs, D = {(xm,ym)

M
m=1}. For the m-th observation, its n-th posi-
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tion is selected with xm,n (‘tokens’) and the corresponding label for this position (‘tags’) is
identified by ym,n.

Concretely, taking natural language as an example, xm may represent a sentence of Nm
words, xm,n is a word in a sentence with the tag ym,n. In general, xm,n 2 V , for a fixed
vocabulary V . However, our analyses are not limited to this and our theoretical and em-
pirical results hold with more general observation classes. Indeed, in all cases, predictive
performance is more a function of the issued set of feature functions (see later) than the raw
observations.

3.2 Models

3.2.1 Conditional Random Fields

Conditional Random Fields (CRFs) [1,2] constitute a structured classification model of the
distribution of ym conditional on xm. The most common form of CRF is the linear-chain
CRF which are applied to sequential data, e.g. natural language, but more general CRFs
can be learnt on trees and indeed arbitrary structures. In general the probability distribution
over the n-th node is influenced by the neighbouring nodes with graphical models, and this
influence is propagated over the structure using algorithms based on message passing [22].
In this section, we will show how marginal probability estimates are computed in the linear
chain CRF framework efficiently, and we will also depict the message passing algorithm
graphically.

The general equation for estimating the probability of a sequence is given by:

PCRF(ym|xm) =
1

ZCRF

Nm

’
n=1

exp{lll>f(ym,n�1,ym,n,xm,n)} (1)

where Nm denotes the length of the m-th instance and n iterates over the sequence. The
model requires specification of feature functions that are (often binary) functions of the cur-
rent and previous labels, and (optionally) the sequence xm. We will discuss the curation of
these feature functions later, but let us assume that a set of J feature functions exist. Both
unigram feature functions that depend on the current label yn (fu( /0,yn,x,n)) and bigram fea-
ture functions that depend on the previous and current labels, yn�1,yn (fb(yn�1,yn,x,n)) are
allowed. We concatenate these into one vector f of length J for notational convenience. In
many applications the set of non-zero feature functions is sparse for any position n allowing
for fast computation even for large J. The set of feature functions has a corresponding set of
parameters (lll 2 RJ); these are learnt from data and are shared across potentials, meaning
that the dynamics of the model do not change over time. Finally, ZCRF is termed the parti-
tion function, and this normalises the output of the model to follow a true distribution. The
graphical model for the CRF is shown for a short sequence in Figure 1.

We will use the vectors aaan, bbb n, gggn, yyyn and matrices YYY n during inference in CRFs.
Subscripts are used to denote the position along the sequence, e.g. aaan is a vector that pertains
to the n-th position of the sequence, and parentheses are used to specify an element in the
vectors, e.g. the y-th value of the n-th alpha vector is given by aaan(y). Matrices are indexed
by two positions, and the (i, j)-th element of YYY n is specified by YYY n(i, j).

In order to reduce the time complexity of inference, we describe a dynamic program-
ming routine based on belief propagation here. We first calculate localised ‘beliefs’ about
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ynyn�1 yn+1. . . . . .

x

Fig. 1: This figure shows the graphical model for linear chain CRFs. Observed nodes are
filled in grey, and this image shows how each node can depend on the whole sequence x.

the target distributions, and these are called potentials. The accumulation of local potentials
at node n is termed the ‘node potential’. This |Y |-vector where the y-th position is defined as
yyyn(y) = exp{ÂJ

j=1 lll jf j( /0,y,x,n)}, where f j is the j-th feature function. Similarly, the accu-
mulation of local potentials at the n-th edge is termed the ‘edge potential’. This is a matrix of
size |Y |⇥ |Y | where the (u,v)-th element is given by YYY n(u,v) = exp{ÂJ

j=1 lll jf j(u,v,x,n)}.
Node potentials are depicted as the edges between observation and targets in Figure 1, while
in the same figure, edge potentials are depicted by edges between pairs of target nodes.

Given these potentials, we can apply the forward and backward algorithm on the CRFs
chain. By defining the intermediate variables gggn�1 = aaan�1 �yyyn�1, and ddd n+1 = bbb n+1 �yyyn
(where � denotes the element-wise product between vectors) the forward and backward
vectors are recursively defined as:

aaan =YYY>
n�1gggn�1 (2)

bbb n =YYY nddd n+1 (3)

with the base cases aaa1 = 1 and bbb N = 1. The un-normalised probability of the n-th position
in the sequence can be calculated with

bP(Yn) = aaan �yyyn �bbb n. (4)

Finally, in order to convert this to a probability distribution, values from (4) must be nor-
malised by computing the ‘partition function’. This is a real number, and may be calculated
at any position n with ZCRF = Ây02Y

bP(Yn = y0). The partition function is a universal nor-
maliser on the sequence, and its value will be the same when computed at any position in the
sequence. With this, we can now calculate the probability distribution on the n-th position

P(Yn) =
bP(Y n)
ZCRF

. (5)

Example 1 (Inference in CRFs) In Figure 2 we show a graphical representation of in-
ference for CRFs. We have overlaid the variables that we defined in this section on the
graph, and, where appropriate, we also give the equations for the variables. From this im-
age we can see that because aaan is a function of aaan�1 (and indeed all elements in the set
{aaam : 1  m < n}), and because bbb n is a function of all elements in {bbb m : n < m  N},
that probability estimation for node n is influenced by all node and edge potentials from the
graph.
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Fig. 2: In this figure we show how marginal inference is performed over node yn with CRF
models, where we have related the theoretical foundations of CRFs described in this section
to a graphical representation of a short sequence. Note, the CRF is an undirected graphical
model, and the arrows shown in this image indicate the direction of the passed messages
when performing inference on yn.

3.2.2 Logistic Regression

We can employ LR in a similar manner as CRFs to predict sequences. LR is formulated as
follows:

PLR(ym,n|xn) =
1

ZLR
exp{lll>f(ym,n,xm,n)} (6)

where lll 2 RJ are the parameters of the model that are associated with the unigram feature
functions, f, and ZLR is the normalising constant. The set of feature functions for LR will be
the same as that for CRFs with the exception that all bigram feature (Fb) functions are zero.

Incorporating LR for sequence prediction assumes that position n of a sequence is un-
conditionally independent of all other positions of that sequence. This is clearly naı̈ve as-
sumption as neighbouring positions should provide additional information for probability
estimates in sequences. However, if the order of the data is preserved and feature extraction
captures the sequential nature of the data, LR may be capable of approximating the marginal
distribution. Probabilities will be approximate, but can be computed with a significant re-
duction of computational complexity than CRFs.

To help us understand the use of LR for sequence prediction, we show in Theorem 1
that given certain conditions on transition potentials of CRFs, unconditional independence
can be proved between adjacent nodes.

Theorem 1 (Effect of rank-1 transition potentials on linear chains)
Rank-1 transition potentials at any position n (1  n  N � 1) of a chain induces un-

conditional independence between the portions of the chain preceding and following posi-
tion n, i.e. P(Y1,Y2, · · ·Yn) ?? P(Yn+1,Yn+2, · · ·YN). In the special case where all transition
potentials are of rank 1, the joint probability of the chain may be exactly computed with
P(Y1,Y2, . . . ,YN) = P(Y1)P(Y2) . . .P(Yn).

Proof Assuming a rank-1 incoming transition potential at position n� 1, Singular Value
Decomposition (SVD) can be employed to decompose YYY n�1 = sn�1un�1v>n�1, where sn�1
is the first singular value of YYY n�1, and un�1 and vn�1 are the first left and right singular
vectors respectively. Given this decomposition, we can re-write the forward vectors as aaan =
(sn�1u>

n�1gggn�1)vn�1. By noting that (sn�1u>
n�1gggn�1) is a scalar which we will denote as

cn�1, un-normalised probability estimates can now be re-written as

bP(Yn) = cn�1vn�1 �yyyn �bbb n (7)
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and the partition function can be computed by marginalising over all possible labels, i.e. ZCRF =
cn�1 Ây02Y vn�1(y0)yyyn(y0)bbb n(y0). The probability distribution over the labels at position n
can now be written as

P(Yn) =
vn�1 �yyyn �bbb n

Ây02Y vn�1(y0)yyyn(y0)bbb n(y0)
(8)

which no longer depends on the previous incoming forward vectors (aaa).
An similar approach will show that P(Yn�1) is independent of all backward vectors.

Finally, if both rank (YYY n�1) = 1 and rank (YYY n) = 1, it follows that

P(Yn) =
vn�1 �yyyn �un

Ây02Y vn�1(y0)yyyn(y0)un(y0)
(9)

which we can is independent of all forward and backward vectors due to the absence of aaa
and bbb . ut

The purpose of this analysis is to motivate the use of LR for sequence modelling by
viewing it as a special case of CRFs. We do not necessarily advocate the use of SVD during
learning/inference as it has time complexity O

�
|Y |3

�
, while belief propagation requires

O
�
|Y |2

�
. Instead, the decomposition of Theorem 1 allows us to understand the connection

between nodes and in particular the conditions where non-trivial transition potentials induce
unconditional independence. Finally, we note that the use of SVD to detect unconditional
independence with large (possibly loopy) graphs of binary variables may be advisable for
non-active transition potentials (i.e. transition potentials that do not depend on x; ‘bias’
transitions). In this case, the presence of rank-1 transition potentials may allow inference
to be performed on a simpler graph that depicts equivalent marginal properties, and this
condition can be encouraged by nuclear-norm regularisation[23].

Example 2 (Rank-1 transition potentials) In Figure 3 we visually demonstrate effect of
rank-1 transition potentials on a sequence. In both subplots in this figure, the log potentials
beyond position 5 were then randomly permuted 250 times. When YYY 5 is of full rank (left),
probabilities at positions 1-5 are dependent on the rest of the sequence. However, when
the transition potential YYY 5 is compelled to have rank 1 (right) we can see that probability
estimates at positions 1-5 are unaffected by potentials at positions 6-10.

4 Theoretical Analysis

In this section we provide some theoretical results regarding learning on weakly dependent
sequences, and where possible we give examples of definitions and concepts. The goal of
this analysis is to show that under certain conditions, regularised Empirical Risk Minimisa-
tion (ERM) classifiers, of which LR is an example, are capable of achieving expected risk
of forecasting on stochastic processes comparable to the risk achievable in a standard IID
setting.
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Fig. 3: This figure shows the effect of full rank transition potentials (left) and rank-1 transi-
tion potentials (right) on marginal probability estimation on CRFs. We can see that proba-
bility estimates at positions 1-5 are unaffected by this permutation when the rank of YYY 5 is
1.

4.1 Preliminaries

We first introduce some basic definitions that will aid the following analysis1.
First we introduce the concept of a measure preserving dynamical system that will be

used throughout. Let ⌦ = (W ,S ,µ) be a probability space for a set W , S a sigma-algebra
on W and µ a probability measure. We similarly define a stochastic process (W ,S ,µ,T )
where T : W ! W is an endomorphism (measure-preserving transformation), meaning that
T is surjective, measurable, and µ(T�1A) = µ(A) for all A 2 S , where T�1(A) denotes the
pre-image of A.

Definition 1 (Ergodicity [24]) An endomorphism T is called ergodic if it is true that T�1A=
A implies µ(A) = 0 or 1, where T�1A = w 2 W : T (w) 2 A.

Definition 2 (Stationarity) Let Z = (Xi,Yi)i�0 be a stochastic X ⇥Y -valued process de-
fined on the probability space (W ,S ,µ), with X ⇢ Rd , Y ⇢ R are compact subsets, and
FX (xi)i=t1+t,...,tk+t represent the cumulative distribution function of the joint distribution of
{Xt} at times t1 + t, . . . , tk + t . Then, {Xt} is said to be stationary if, for all k, for all t , and
for all t1, . . . , tk,

FX (xt1+t , . . . ,xtk+t) = FX (xt1 , . . . ,xtk). (10)

Since t does not affect FX (·), FX is not a function of time.

Definition 3 (Regularity) Let µ be a measure on Rd . µ is a regular Borel measure if for
any two measurable sets A,B⇢Rd , µ(A) = µ(A+B)+µ(A\B), and if there exists a B2Rd

such that A ⇢ B and µ(A) = µ(B).

Definition 4 (Hölder continuity) A function f on Rd space is Hölder continuous, when
there are non-negative real constants C, a , such that

| f (x)� f (y)|C||x� y||a (11)

for all x and y in the domain of f . a is the exponent of the Hölder condition. If a = 1, then
the function satisfies a Lipschitz condition. If a = 0, then the function is simply bounded.

1 The symbols a , b , g , d , and l have alternate definitions when referenced in Sections 3 and 4. While po-
tentially confusing, we chose this notation in order to be consistent with the conventions of previous research
in both areas.
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Example 3 (Regularity and Hölder continuity) In Figure 4 we show a signal (blue) and
the Hölder envelope (green) at a position x0 = 0. In this example, we can see that the signal
never extends beyond the Hölder envelope, and consequently we can understand Hölder
continuity is a measure of the regularity of a signal.

Fig. 4: A signal (blue) and its Hölderian envelope computed at x0 (green). As expected, the
envelope bounds the signal, i.e. | f (x)� f (x0)|C||x� x0||a .

Definition 5 (Mixing) The transformation T : X ! X is said to be mixing if for any two
measurable sets A,B ⇢ X , one has µ(A\ T�n(B)) ! µ(A)µ(B) as n ! •. This property
is closely related to the decay of correlations. If f is mixing, and iff correlations decay,
cor(f ,j)! 0 as n ! •, where

cor(f ,j) :=
Z

W
f ·jdµ �

Z

W
fdµ �

Z

W
jdµ, (12)

is the correlation of the square integrable functions f ,j 2 L1(µ) satisfying fj 2 L1(µ).

Example 4 (Mixing) IID processes are mixing according to Definition 5 applied to fi-
nite dimensional cylinder sets (open sets of the natural topology of sequences of random
variables). Ergodic Markov chains are also mixing (such as the Occasionally Dishonest
Casino (ODC) example that we will analyse in subsection 4.3). Generally, any strictly sta-
tionary, finite or countable-state aperiodic Markov chain is mixing.

Definition 6 (Strong mixing) Suppose X := (Xk,k 2 Z) is a sequence of random variables
on a given probability space (W ,S ,µ). For �•  j  `  •, let S `

j denote the s -field of
events generated by the random variables Xk, j  k  ` (k 2 Z) . For any two s -fields A

and B ⇢ S , define the ‘measure of dependence’

a(A ,B) := sup
A2A ,B2B

|µ(A\B)�µ(A)µ(B)|.

For the given random sequence X , for any positive integer n, define the dependence co-
efficient a(n) = a(X ,n) := sup j2Z a(S j

�•,S •
j+n). By a trivial argument, the sequence of

numbers (a(n),n 2 N) is non-increasing. The random sequence X is said to be ‘strongly
mixing’, or ‘a -mixing’, if a(n)! 0 as n ! • .
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Definition 7 (Lipschitz Loss) Let the function L : X ⇥Y ⇥R! [0,•) be a convex, differ-
entiable and locally Lipschitz continuous loss function, and it also satisfies L(x,y,0) 1 for
all (x,y) 2 X ⇥Y . Moreover, for the derivative L0 there exists a constant c 2 [0,•) such that
for all (x,y, t),(x0,y0, t 0) 2 X ⇥Y ⇥R we have |L0(x,y,0)| c and |L0(x,y, t)�L0(x0,y0, t 0)|
ck(x,y, t)� (x0,y0, t 0)k2.

Definition 8 (Linear Classifiers) Given X ⇢ Rd and Y ⇢ R, and a measurable function L
as defined above. For a finite sequence T = ((x1,y1), . . . ,(xn,yn)) 2 (X ⇥Y )n and a func-
tion f : X ! R, we define the empirical L-risk by RL,T ( f ) := 1

n Ân�1
i=0 L(xi,yi, f (xi)). For

a distribution P on X ⇥Y , we write RL,P( f ) :=
R

X⇥Y L(x,y, f (x))dP(x,y) and R
⇤
L,P :=

inf
�
RL,P( f )| f : Rd ! Rd� for the L-risk and minimal L-risk associated to P. Let L be a

stable regulariser on F , that is, a function L : F ! [0,•) with L(0) = 0. We will also
require the following:

r⇤ := infL( f )+RL,P( f̂ )�R
⇤
L,P, r > r⇤ (13)

and

Fr :=
�

f 2 F : L( f )+RL,P( f̂ )�R
⇤
L,P  r

 
. (14)

giving r⇤  1 since L(x,y,0)  1, 0 2 F , and L(0) = 0. We also assume there is a mono-
tonically decreasing sequence (Ar)r2(0,1] such that

kL� fk  Ar 8 f 2 Fr,r 2 (0,1] (15)

Because of Equation 14 we have that
��L� f̂

��  A18 f 2 F and r 2 (0,1]. Finally assume
there exists a function j : (0,•)! (0,•) and a p 2 (0,1] such that, 8 r > 0 and e > 0, we
have

logN (Fr,k·k• ,e) j(e)rp. (16)

We will first use a result regarding the consistency of SVM for forecasting the evolution
of an unknown ergodic dynamical system from observations with unknown noise [12] that
can easily be extended to LR. We firstly restate assumptions S1 and S2 from [12] monotone
sequences:

Assumption 1 For a fixed strictly positive sequence (gi)i�0 converging to 0 and a locally
Lipschitz continuous loss L the monotone sequences (ln) ⇢ (0,1] and (sn) ⇢ [1,•) satisfy
limn!• ln = 0, supn�1 e�sn |L|

s�1/2
n ,1

< •,

sup
n�1

lns4d
n

|L|
s�1/2

n ,1

< • and lim
n!•

|L|3
s�1/2

n ,1
s2

n

nl 4
n

n�1

Â
i=0

gi = 0.

Assumption 2 For a fixed strictly positive sequence (gi)i�0 converging to 0 and a locally
Lipschitz continuous loss L the monotone sequences (gn) ⇢ (0,1] and (sn) ⇢ [1,•) satisfy
limn!• lnsd

n = 0,

lim
n!•

lns4d
n

|L|
s�1/2

n ,1

= • and lim
n!•

s2+12d
n
nln

n�1

Â
i=0

gi = 0.
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These assumptions define two complementary conditions: the first implies that ln should
tend to zero, and the other is that it should not decay too fast. This in turn ensures that both
the approximation error and statistical error decay to zero, which is as we would expect for
consistent classifiers (see [12] for details).

Theorem 2 (Consistency of LR) Let Z be a stochastic process as defined in Definition 2.
We write P := µ(X0,Y0) and assume that Z has a decay of correlations of some order (gi).
In addition, let L : X ⇥Y ⇥R! [0,•) be the logistic loss L(t) = log(1+exp(�t)). Then for
all sequences (ln) ⇢ (0,1] and (sn) ⇢ [1,•) satisfying Assumptions S1 and S2 from [12]
and all e 2 (0,1] we have

lim
n!•

µ(w 2 W : |RL,P( fTn(w),ln,sn)�R
⇤
L,P|> e) = 0

where Tn(w) :=((X0(w),Y0(w)), . . . ,(Xn�1(w),Yn�1(w))) and fTn(w),ln,sn is the LR fore-
caster defined by Equation 6.

Proof This is an application of [12, Theorem 2.4] to LR using the fact that LR and SVMs
are both Lipschitz continuous up to a change in constants [25], and since the logistic loss
satisfies Definition 7 as well as assumptions 1 and 2 it also satisfies Theorem 2.4. ut

Using the smoothness assumptions on the map T : M ! M,M ⇢ Rd as defined in Defi-
nition 5, and restricting the measure µ to be a Lebesgue outer measure on Rd (i.e. it satisfies
Definition 3, the LR is consistent in the sense of Theorem 2 and has a rate of convergence
that is related to the the rate of mixing of the stochastic process Z (or alternatively, rate of
decay of the auto-correlations). Theorem 2 applies to stochastic processes that are a-mixing
with rate (gi). However, there are interesting stochastic processes that are not a-mixing but
still have fast decay of correlations. We now introduce C-mixing processes [26], which make
weaker assumptions than the strong mixing used thus far.

Definition 9 (C-Mixing [26]) Given a semi-norm k·k on a vector space E of bounded mea-
surable functions f : Z ! R, we define the C-Norm by k fkC := k fk• +k fk and denote the
space of all bounded C-functions by C(Z) := { f : Z ! R|k fkC < •}. Some examples of
semi-norms that can be used for k fk are given in [26]. Let (W ,S ,µ) be a probability space,
(Z,B) be a measurable space, Z := (Zi)i�0 be a Z-valued, stationary process on W with a
C-norm k·kC, then for n � 0 we define the C-mixing coefficients by:

fC(Z ,n) := sup
n

cor(y,h�Zk+n) : k � 0,f 2 BL1(Ak
0,µ)

,h 2 BC(Z)

o
(17)

with the time reversed coefficients

fC,rev(Z ,n) := sup
n

cor(h�Zk,j) : k � 0,h 2 BC(Z),j 2 BL1(A•
k+n,µ)

o
. (18)

Let (dn)n�0 be a strictly positive sequence converging to 0. Then we say Z is C-mixing
with rate (dn)n�0 if fC,(rev)(Z ,n) dn8n � 0. Moreover, if (dn)n�0 is of the form

dn := cexp(�bng), n � 1, (19)

for some constants b > 0,c � 0,g > 0, then Z is called geometrically time-reversed C-
mixing.

Example 5 (Bounded variation and C-Mixing) If we take as an example of the semi-norm
k fk= k fkBV (Z), where BV (Z) = sup

R
f (dZ)/(dx), i.e. the total variation is bounded, then

it is well know that BV (Z) together with k fk• forms a Banach space, and satisfies the
conditions of a C-norm. Examples of such functions are given in Figure 5, and some further
examples of C-mixing processes are given in [26], along with relations to well-known results
on the decay of correlations of dynamical systems.
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Fig. 5: On the interval [0,1], the function x2 sin
�
x�1� is of bounded variation, but xsin

�
x�1�

is not.

4.2 Learning rates

Thus far we have only shown that the risk of the LR solution converges to the smallest
possible risk. However, for practical considerations the speed of this convergence is of great
importance. In order to use the above analysis to get a rate of convergence, we need to place
additional restrictions on T and µ to give us a quantitative version of Theorem 2. We will
now give learning rates for regularised ERM classifiers on C-Mixing processes.

Theorem 3 Let Z := (Zn)n>0 be a Z-valued stationary geometrically (time-reversed) C-
mixing process on (W ,S ,µ,T ) with rate (dn)n�0 and k·kC as defined in Definition 9, and
P := µZ0. Moreover, let L be a loss satisfying Definition 7. In addition assume that there
exists a Bayes decision function f ⇤L,P, we have that

EP
�
L(x,y, f )�L(x,y, f ⇤L,P)

�2  16
�
EP

�
L(x,y, f )�L(x,y, f ⇤L,P)

��
, f 2 F , (20)

where F is a hypothesis set with 0 2 F . Defining r⇤, Fr, and Ar by (13), (14), (15) respec-
tively and assume that Equation 16 holds. Finally, let L : F ! [0,•) be a regulariser with
L(0) = 0, f0, f1 2 F be fixed functions, and A0,A1,A⇤ � 0,B0 � 1 be constants such that
kL(x,y, f0(x))k  A0, kL(x,y, f1(x))k  A1, kL(x,y, f ⇤LP)k  A⇤ and kL(x,y, f0(x))k•  B0.
Then for all fixed e > 0,d � 0,t � 1 and

n � n⇤0 := max
⇢

min
⇢

m � 3 : m2 � K and
m

(log(m))2/g
� 4

�
,e3/b

�
(21)

with K = 1212c(4A0 +A⇤+A1 +1), and r 2 (0,1] satisfying

r � max

(
cV (log(n))2/g(t + log(4/e)2pr2p

n
,

20(log(n))2/g B0t
n

)
(22)

with cv = 32938 2
3 , every learning method defined by Definition 8 satisfies with probability

µ not less than 1�16e�t :

L( fDn)+RL,P( fDn)�R
⇤
L,P < 2L( f0)+4RL,P( f0)�4R

⇤
L,P +4dr+5de +2dd . (23)
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Proof This is a direct application of the bound of [26, Theorem 4.10], with some minor
modifications. Firstly, since we are interested in classification rather than regression, and we
can without loss of generality shift our classifier outputs away from zero and one by some
small epsilon, we are not concerned with the possibility that our predictor can incur arbitrar-
ily large loss for any given example. This allows us to drop the clipping restriction required
by the theorem, and instead fall back on linear classifiers that have Lipschitz bounded loss
functions defined in Definition 7. Further to this, we are here interested in a simpler class of
Hilbert spaces than that induced by the Gaussian kernel, so we can instead use the covering
number of linear or polynomial kernels (which can be seen as equivalent to n-gram type fea-
tures when neighbouring data points are concatenated). Since we know from [27] that the
covering number for a polynomial kernel is given by logN (e) (d +1) log(4/e),8e > 0,
it is easy to see that the covering number for linear kernels is logN (e) 2log(4/e). ut

It is worth noting that these bounds are very similar to the Bernstein type bounds achiev-
able for IID processes. The implication is that, given mild assumptions on the nature of the
dependence of the underlying process (i.e. a geometric rate of decay of correlations), we
will be able to learn a classifier that in the limit will behave as if the data were indeed IID,
with the rate of convergence being directly related to the rate of decay of correlations of the
underlying process. Intuitively, this makes sense: if the decay is sufficiently fast, we have
a high probability that, given a ‘current’ example and another randomly selected example,
there will be virtually no dependence between them, so the standard theory then holds. Fur-
thermore, it implies that if we construct features that capture some notion of the context,
such as the n-gram feature templates discussed herein, we can accurately capture the full
dependency structure of the sequence, and that the faster the rate of decay of correlation, the
smaller the resulting feature templates need to be.

In this analysis, we have considered linear measures of correlation. It is also possible to
consider nonlinear measures of dependence in the time series, such as the non-parametric
extension of Kendall’s Tau [28] for sequences, or other nonlinear rank-based measures [29].
Whilst this is outside the scope of this work, this would be an interesting area of investigation
from both theoretical and experimental perspectives.

Interestingly, however, linear measures of correlation are valid for many stochastic (in-
cluding chaotic) processes that display highly nonlinear behaviour, as they will still have
bounded auto-correlation. A common example is the set of Lipshitz continuous functions,
which are a special case of these C-Mixing processes (c.f. Definition 9 and Example 5).

In the following, as a concrete example of a stochastic process to which this theory
can be applied, we analyse the Occasionally Dishonest Casino (ODC), giving a method to
quantify the rate of convergence of correlations based on the parameter settings used to
define the sequence. We empirically analyse this setting in section 5 and section 6.

4.3 Auto-correlation of the Occasionally Dishonest Casino

Markov’s theorem tells us that a Markov chain is ergodic if there is a strictly positive prob-
ability to pass from any state to any other state in one step, so by construction the ODC
as defined in Theorem 4 satisfies ergodicity. Furthermore, by the definition of stationarity
given in Equation 10, by construction the ODC is also a stationary system. Following on
from this, we give an example of quantifying the expected auto-correlation for the ODC as:

Theorem 4 An Occasionally Dishonest Casino (ODC) uses two kinds of die. Define the
set of outcomes S, e.g. for a 6-sided die S = {1,2,3,4,5,6}. A fair die has 1

|S| probability
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of rolling any number, and a loaded die that has pv probability to roll a value v 2 S and
p⇠v = 1�pv

|S|�1 probability to roll each of the remaining numbers. We will use the notation
SS = Âx2S x to denote the sum of the possible outcomes in S, and SS\v = Âx2S\{v} x. Assume
a symmetric probability ps that the casino switches from fair to loaded die and back. The
expected auto-correlation R of the discrete time process depending on v, pv and ps, and for
a six-sided die S = {1,2,3,4,5,6}, is given by:

R(v, pv, ps) = lim
N!•

1
N

N�1

Â
n=0

"
2(Xt �C)(Xt+n �C)

35
12 + pv(v�D)2 + p⇠v

5 Âx2S\{v} (x�D)2

#
.

where C =
7�2D

4
, D = vpv �

21� v
5

p⇠v (24)

Proof See supplementary material.

This analysis has related the learning rates of linear classifiers such as LR of the decay
in correlations in the sequence, which motivates the empirical use of auto-correlation as a
sensible quantity to estimate when deciding whether or not a structured model is required.
There are two main factors affecting the decay of correlations in a sequence: the strength of
the chaos in the underlying dynamical system g : X ! X , and the regularity of the observ-
ables F and G. Generally speaking, the correlations decay rapidly if the system is strongly
chaotic and the observations are sufficiently regular (e.g. systems that are Hölder continuous
– see Definition 4). We shall see that many real-world problems that have been considered to
be sequential classification tasks, and hence ‘requiring’ structured models, in fact do exhibit
the rapid decays in auto-correlation required by the theory.

5 Features, Datasets and Experiments

In this section we describe feature extraction methodology and datasets used for our empir-
ical results.

5.1 Features

Feature are often specified with so-called ‘feature templates’ in sequential classification.
This is a powerful framework as it allows the practitioner to abstractly define the form of
features instead of manually curating them explicitly.

We extract n-gram features from our datasets as a proxy for encoding sequential infor-
mation. For example, the templates fh�1,0i and fh0,1i specify that, for every position n in the
input sequence, the feature fh�1,0i will be the concatenation of the (n�1)-th and n-th value
in the input sequence, and the feature fh0,1i will be a concatenation of the n-th and (n+1)-th
values. In this work we employ n-grams of up to length 5, and we also extract long-range
‘skip-grams’ (i.e. conjunctions of non-contiguous positions) which can capture long-range
dependencies.

The exact form of the feature templates used in our analyses will be clarified in the
next sections. Our data is generally discrete from a finite vocabulary, V , meaning that the
feature functions in this analysis return binary values. However, this is not a limitation of our
framework and real-valued and continuous data (e.g. accelerometer, physiological signals,
images) can be considered by our analysis by incorporating sparse coding techniques, for
example. In general, CRFs are entirely agnostic to the operations that are performed on the
data so long as real-valued numbers are returned.
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5.2 Datasets

5.2.1 Word Hyphenation

Word Hyphenation (WH) (or orthographic syllabification) is the process of separating words
into their constituent syllables, and the boundaries between syllables are a natural position
for hyphens. This is a pre-processing step in a number of different tasks. The authors of
[30] posed this problem as a sequential binary classification task using linear-chain CRFs.
To represent the problem, the researchers used the feature template system described earlier
considering all 15 contiguous sub-strings up to length 5 that include the n-th position:

FH = { fh0i, fh�1,0i, fh0,1i, . . . , fh�1,0,1,2,3i, fh0,1,2,3,4i}. (25)

Excellent prediction was obtained for English and Dutch corpora. In our results section,
we assess the classification performance on the English corpus (the harder task based on
performance evaluation, consisting of approximately 80% negatives) with FH.

5.2.2 Smart Home Activity Recognition

The Centre for Advanced Studies in Adaptive Systems (CASAS) research group focus on
many aspects of AR in smart environments, and provide a number of annotated datasets.
We consider the hand-segmented data from the twor.20092 multiresident dataset [31]
to allow a focus on activity recognition instead of other AR challenges, such as activity
segmentation. This dataset was recorded ‘in the wild’ where various sensors placed in the
home (e.g. motion, temperature, door sensors were present in all rooms in the house) were
activated when a resident performed Activities of Daily Living (ADL), and activities are
predicted based on the patterns sensor activation, see Figure 6. Annotations were applied
retrospectively by domain experts.

Fifteen activities are labelled in this dataset, and labels with fewer than two occurrences
were removed. Some ADLs will ‘look’ the same from a sensor activation point of view
(e.g. meal preparation and washing up). Therefore, the principal difficulty of AR lies in
discriminating between ‘similar’ activities and in identifying the correct resident to the pre-
dicted activity.

We represent this data in an atomic state-change manner, e.g. xn =(m16 on,m15 on,m17 on,m15 off, . . .)
would be a sequence of sensor activations that would be predomenently in the kitchen (lower
right hand side of Figure 6), and we make predictions for all events activations. With this
representation we can readily apply feature templates discussed earlier. Because ‘breakfast’
sensor activities will resemble ‘lunch’ and ‘dinner’ activities, we further adjust feature spec-
ification by adding 1-of-24 categorical hour of day features.

5.2.3 Occasionally Dishonest Casino

The Occasionally Dishonest Casino (ODC) is a well-known hypothetical scenario in which
a die can transition between fair (F) and loaded (L) states. When in the fair state, a uniform
discrete probability distribution is imposed on the die, and when in the loaded state the die
will roll to its biased face with probability pb, and to its remaining faces with probability
(1� pb)/5.

2 http://casas.wsu.edu/datasets/twor.2009.zip
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Fig. 6: Floorplan of the twor.2009 smart home. Motion sensors (prefixed with m) are
regularly distributed throughout the house. As residents move throught the smart home,
these sensors detect motion and trigger between the ‘off’ (no motion) and ‘on’ (motion)
states.

The ODC is depicted by the automaton in Figure 7 in which the biased face is selected
as 1. The task we choose is to predict when the die is in a fair state given only a sequence
of face observations. To generate an instance, we randomly walk through the automaton
according to the ‘transition’ and ‘emission’ probabilities. Each walk consists of Mn ‘rolls’
(Mn v Poisson(l )), and we set l = 100 arbitrarily. We reduce the degrees of freedom of
this model to one by imposing symmetric transition probabilities. A dataset consists of N
random walks, and we have set N = 2000, pt = 0.05, and pb = 0.5 (following [32]). The
class distribution is balanced due to the symmetric transition probabilities.

y p(y|F)

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

F L

y p(y|L )

1 1/2
2 1/10
3 1/10
4 1/10
5 1/10
6 1/10

pF!F pL!L

pF!L

pL!F

Fig. 7: The ODC drawn as a graphical model. Here, we have Fair and Loaded states, and the
probability distribution over a die is shown for both in a conditional probability table. Data
is generated by randomly walking through the automaton.

5.3 Performance Evaluation

Given a set of ground truth labels and classifier predictions, we can define predictions as
being True Positives (TPs), True Negatives (TNs), False Positives (FPs), or False Negatives
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(FNs). By accumulating these over a dataset, we can compute various accuracy metrics,
including precision, recall as follows:

precision =
#TP

#TP+#FP
(26)

recall =
#TP

#TP+#FN
(27)

Precision and recall are accuracy metrics, and these averaged by calculating their har-
monic mean, which yields the F-Score:

F1 = 2⇥ precision⇥ recall
precision+ recall

(28)

The F-Score relates to classification accuracy and ignores the effect of the true negative
examples, and its utility as an accuracy measure is well documented [33].

Finally, we also compute the Brier score [34]:

BS =
1
N

N

Â
n=1

C

Â
c=1

wc (pn,c � yn,c)
2 (29)

where N is the number of test sequences, C is the number of classes, wc is the weight for
each class, pn,c is the predicted probability of instance n being from class c, and yn,c ground
truth label. Lower Brier score values indicate better performance, with optimal performance
achieved with a Brier score of 0.

We perform 10-fold cross validation on all experiments, and results report the mean and
standard deviation calculated on the test-folds. Hyperparameters are kept at their default
values for all experiments.

Generally, it is assumed that for sequential tasks CRFs will perform significantly better
than non-sequential models, such as LR. In our results, we compare the performance of
CRF and LR models with statistical hypothesis testing. Note that for experiments that yield
insufficient evidence to reject the null hypothesis indicate that we should not prefer CRFs
over LR.

5.4 Experiments Conducted

Our first experiments assess the difference in classification performance between LR and
CRF models over the Word Hyphenation (WH), Activity Recognition (AR) and Occasion-
ally Dishonest Casino (ODC) datasets (described previously). With the ODC dataset, we
also show how LR models can approximate the ‘smoothing’ behaviour that one can achieve
in sequential models (e.g. CRFs).

We demonstrate relationship between our main theoretical results with practical exper-
iments. We have already shown the empirical effect of rank-1 transition potentials on in-
ference with CRFs in Example 2. Second, we show how the auto-correlation and its rate
of decay can be employed to glean insight into the characteristics of sequential data. This
is then used to guide the specification of feature templates in a manner that demonstrably
improves classification performance.
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Table 1: Classification performance of CRF and LR models on WH dataset and AR datasets.

Dataset Model F-Score Brier Score

WH CRF 0.963±0.0014 0.012±0.0004
LR 0.966±0.0012 0.011±0.0003

AR CRF 0.7980±0.0445 0.0222±0.0044
LR 0.7876±0.0439 0.0209±0.0039

Finally, we perform analyses that investigate classification performance with increas-
ingly expressive feature representations (which we term ‘incremental performance assess-
ment’). To do this, we will assume that the feature templates are ordered by increasing
expressivity (n-gram templates are more expressive than (n�1)-gram templates). The incre-
mental subsets will consider up to c templates, and are denoted by F

c
H ✓FH. Using the WH

feature templates as an example, F 2
H = { fh0i, fh�1,0i}, and F

4
H = { fh0i, fh�1,0i, fh0,1i, fh�1,0,1i}.

6 Results and Discussion

6.1 LR and CRF Classification Performance

6.1.1 WH/AR/ODC

Table 1 shows the averaged F-Score and Brier score of the CRF and LR models for the
WH and AR datasets. LR models performed marginally better than CRF models on both
F-Score and Brier score metrics on the WH task. We conducted two-way Analysis of Vari-
ance (ANOVA) to determine if any of the differences reached statistical significance, but
found that all main effects failed to reach significance at the p < 0.01 level. Indeed, the
lack of statistical significance is suggestive that neither model should be preferred. We ob-
tained similar performance to those from the original paper [30] with both LR and CRF
classification models.

Table 1 summarises the results for the AR dataset. It is worth noting that our results are
competitive with those obtained by a number of AR researchers with FH feature templates
even though these were not designed for AR. Classification performance is improved sub-
stantially against the majority-class classifier. We also note that variance of predictions is
quite large for the AR results, and this is due to sample size and the sparsity of some labels.

Figure 8 shows the probability estimates obtained by CRF and LR models for a partic-
ular sub-sequence of die rolls of the ODC dataset. The upper bar chart shows the faces that
were rolled (blue fill indicates the fair state whereas red fill indicates the biased state). In the
lower image, the red line gives the probability estimates from the CRF model, and the blue
line gives those of the LR model. The biased face is 1.

While we are attempting to estimate the probability of bias in this example, we do not
necessarily desire ‘responsive’ changes in these probability estimates. Such changes would
likely be indicative of overfitting because realisations of the biased face are always possible
in both biased and unbiased states. Instead, we wish for probability estimates between neigh-
bouring positions to be correlated, due to the parameterisation of pt in the ODC (c.f. subsub-
section 5.2.3). For applications that require decisions rather than probability estimates, we
would recommend computing the Viterbi path [35] through the sequence rather than thresh-
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olding these probability estimates as the Viterbi path depicts the most likely path through
the sequence.

We can see that CRF and LR predictions exhibit similar dynamics, though the CRF
estimates are smoother due to the message passing routine used within the internal structure
of the model. LR probability estimates appear to not fall below a value of 0.15 whereas
CRF models can assign lower probability estimates because sequences of agreeing beliefs
will support one another.

6.1.2 Comments on results

We evaluated our classification performance on F-Score and Brier scores. Statistical testing
did not yield sufficient evidence for rejecting the null hypothesis for all datasets, i.e. CRFs
should not be preferred. However, upon deeper investigation, we consistently found for all
experiments on all datasets that LR models out-performed CRFs on precision, and CRF
models out-performed LR models on recall; in other words, CRFs predict more actual pos-
itives, but positive predictions from LR models are more likely to be true positives. CRF
models make predictions with influence of the beliefs at neighbouring positions (which
themselves have been influenced by their neighbours) so that all nodes in a sequence af-
fect the marginal probabilities calculated at all positions, whereas LR models can only rely
on features extracted from local regions of a sequence.

For the task of WH, the authors of [30] explicitly stated that false positive predictions
are less desirable than false negatives. In prediction, therefore, the authors thresholded prob-
ability estimates at a high value (e.g. 0.99) and were able to reduce the false positive rate
significantly. We have found that LR models can naturally achieve this on the WH dataset
without having to threshold the probability estimates at such high values. Therefore, based
on the consistency of our observations in all of our experiments, if LR and CRF performance
is equivalent, we believe that practitioners informed on the relative costs of false positive and
false negative predictions in the application domain may wish to pick the model that best
suits these costs; e.g. LR if false positives are more costly than false negatives.

The ODC dataset has been used extensively as an exemplar of ‘smoothing’ probability
estimates over sequences. The task we investigate here is to learn the conditional distribution
of the fair and biased states with expressive feature templates. Interestingly we demonstrated
that LR probability estimates resemble the smoothed probabilities (Figure 8), which indi-
cates that the smoothing behaviour of structured models can be approximated with a rich
set of features. However, in some applications the number of parameters required for un-

Fig. 8: Marginal probability estimates of bias with LR and CRF models for a sequence of
die rolls. Both models follow similar general trends indicating that LR probability estimation
approximates CRF smoothing.
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structured models to approximate the smoothed estimates may be greater than the number
of parameters required to train a ‘simpler’ CRF model. We will look at this in more detail in
subsubsection 6.3.3.

6.2 Comparison to Theory

6.2.1 Analysis of auto-correlation

The theory discussed in section 4 related the excess classification risk imposed by ignoring
the sequential nature of data to the auto-correlation of the examples. We show the log of
auto-correlations of the features as calculated on the three datasets considered in ??.

(a) ODC dataset (b) AR dataset (c) WH dataset

Fig. 9: auto-correlation of ODC/AR/WH datasets. The x-axis is the range of lages that were
considered, and the y-axis marks the log of the auto-correlation. The rate of decay of the
auto-correlation is dataset-dependent, with AR depicting the slowest rate, and WH depicting
the fastest.

Figure 9a shows the log of the auto-correlation of the ODC dataset for a sample of
1 000 000 die rolls with various values of pt (as shown in the legend). This image shows that
smaller pt yield correlations which persist for longer, as one might expect, although these
decay exponentially to a baseline value (⇡ 10�6).

The auto-correlation of the AR data is shown in Figure 9b. A wide range of lags was
considered here as the average sequence length was long. In this image we can observe a
high auto-correlation over the set of lags considered, with a slower rate of decay in compar-
ison to that shown in the ODC. This trend in this figure is visually reminiscent of the trend
shown in Figure 9a for small pt .

Figure 9c shows the auto-correlations for the WH dataset. Interestingly, this image
shows asymmetric auto-correlation is obtained, and that the values obtained at positive lags
are greater than those obtained for negative lags.

6.3 Relating Theoretical Results to Practical Experiments

6.3.1 Improving WH Performance

We noted greater auto-correlation values at positive lags for WH which suggested that more
contextual information about hyphenation is available at positive lags than at negative lags.
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We constructed a new set of feature templates which placed more emphasis on conjunc-
tions of ‘future’ sub-strings (FH+) to determine whether performance would improve. Using
FH+, we obtained higher F-Scores to 0.965 and 0.971 respectively for CRF and LR mod-
els. While this is a modest and statistically insignificant improvement, the use of the FH+
features yielded improved results on all 10 test folds for LR and CRF models. Furthermore,
that these templates should improve prediction is not altogether obvious, but the potential
for improvement was unveiled by an a priori analysis of the auto-correlation.

FH+ defines feature templates that place increased emphasis on ‘future’ data. We also
performed experiments with FH- which increase emphasis on past data. We found that all
performance metrics with FH- feature templates degraded when compared to FH and FH+.

6.3.2 Improving AR Performance

By considering the auto-correlation in Figure 9b, we can see that the auto-correlation re-
mains high over the range of lags shown. We postulate that wide-spanning feature templates
may capture context which may improve classification performance. We tested this hypoth-
esis by defining the following skip-gram feature templates

FAR = fh0i [{ fh�i,0,ii}
NAR
i=1 (30)

where we have set NAR = 25 as, for this range, the auto-correlations remained approximately
symmetric in Figure 9b. Using these feature templates we obtained an improvement of 5%
with CRF and 6% with LR models, yielding a micro F-Score of ⇡ 84% for both models.

While modest improvements were made in predicting ADLs on average, we have made
particular improvements on ‘bed to toilet’ activities achieving relative improvements of ⇡
0.25 with LR and CRF models for both residents. It should be noted that we achieved these
improvements using new feature templates that were inspired by analysis of auto-correlation
trends rather than explicit curation.

6.3.3 Incremental Performance Assessment

We previously stated that is reasonable to assume that (n+ 1)-gram features are more ex-
pressive than n-gram features, so by taking subsets of FH (as described in section 5) we
can demonstrate classification performance as the feature representation becomes more and
more expressive.

For WH and AR datasets, optimal classification performance is obtained with the full set
of feature templates, and so incremental performance only demonstrates that CRF models
achieve better performance with more features. With the ODC dataset we notice that CRF
models begin to overfit the data quickly, as shown in Figure 10. We believe the cause for this
is due to using complex features to model the simple generative process that underlies the
ODC. Interestingly, maximal performance is achieved with the CRF using only three feature
templates (i.e. F

3
H = { fh0i, fh�1,0i, fh0,1i}).

To investigate the effect of encoding long-range dependencies into the sequences, we ap-
plied the FAR feature templates to the ODC prediction problem. With reference to Figure 9a
we selected NAR = 12 (as this is approximately the point at which the auto-correlations de-
cay to their minimal value). With these feature templates we obtained F-Scores of ⇡ 0.83
with both LR and CRF models. Interestingly, the span of these features is 24 instances,
which approximately corresponds to the expected run-length of the model since pt = 0.05.
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Fig. 10: Incremental F-Scores obtained from LR and CRF models on the ODC dataset.
We can see here that the CRF model achieves its best results with a simpler representation
(owing to the propagation of beliefs over the sequence), while LR models require a more
complicated representation in order to capture the context of the data.

7 Conclusions and Future Work

The ultimate aim of this work is to lay the foundations to determine whether structure needs
to be modelled in sequence prediction. Since no unified theoretical and practical assessment
of this important question has been considered before, the decision of incorporating structure
into a classification problem in much of the applied work that deals with sequences can be
considered arbitrary. This paper makes the first steps towards rationalising this decision in
general settings.

We demonstrated that structured and unstructured classification models can both achieve
equivalent performance on sequential prediction problems. It is remarkable that all sequen-
tial datasets investigated in this work could be equivalently modelled by simpler, unstruc-
tured models that ignore the sequential nature of the data and instead use features to capture
the temporal dependencies. However, we provide an explanation for this in our theoretical
analysis of these problems and show that classification risk is intimately linked to the rate of
decay of auto-correlations, and the features used in unstructured models cases capture the
context with features.

For applications where statistical significance favours neither CRF nor LR models, we
would submit to Occam’s razor and recommend the selection of the simpler model (i.e. the
model with fewer parameters) as these should reduce the risk of overfitting and because they
offer (potentially significant) reduction in training time. Indeed, from a computational per-
spective, LR requires optimisation over |Y |2 fewer parameters than linear-chain CRFs, and
therefore may be a favourable model choice based on savings in time and space complexity.
This point is of particular interest for streaming applications using CRFs as exact marginal
distributions are only available once the full sequences have been obtained (see [14] for
further discussion). Conversely, exact marginal distributions may be calculated in real-time
with LR models.

We used visual analytics tools by leveraging the results of our theoretical analyses. These
tools operate on the auto-correlations of dataset sequences a priori to learning classification
models, and naturally guided us to specify feature templates that, when incorporated into
the classification model, improved classification performance over all datasets.

We speculate that, in general, sequential datasets may have a ‘fundamental bandwidth’
property, that is related to the jurisdiction over which a particular instance has marked in-
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fluence. We are encouraged by the variety of auto-correlation profiles that we obtained in
our experimental section as these lead us to define different feature templates that improved
classification performance. Defining a means of automatically computing this would yield
many advantages in sequential modelling, and this work lays the theoretical and practical
foundations for the automated discovery of this property.

Future work will seek to extend this work in the following manners. First, we will at-
tempt to automate the specification of (potentially localised) structure based on the auto-
correlation profiles that were described in this paper. Furthermore, we will seek to gener-
alise the theoretical and practical analyses outlined in this paper over, for example, nonlinear
auto-correlation measures, and to arbitrary graphical structures.
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