
Unsupervised Learning of Sensor Topologies for Improving Activity
Recognition in Smart Environments

Niall Twomeya, Tom Diethea, Ian Craddocka, Peter Flachb

aDepartment of Electrical and Electronic Engineering, University of Bristol.
bDepartment of Computer Science, University of Bristol.

Abstract

There has been significant recent interest in sensing systems and ‘smart environments’, with
a number of longitudinal studies in this area. Typically the goal of these studies is to de-
velop methods to predict, at any one moment of time, the activity or activities that the
resident(s) of the home are engaged in, which may in turn be used for determining normal
or abnormal patterns of behaviour (e.g. in a health-care setting). Classification algorithms,
such as Conditional Random Fields (CRFs), typically consider sensor activations as features
but these are often treated as if they were independent, which in general they are not. Our
hypothesis is that learning patterns based on combinations of sensors will be more power-
ful than single sensors alone. The exhaustive approach – to take all possible combinations
of sensors and learn classifier weights for each combination – is clearly computationally
prohibitive. We show that through the application of signal processing and information-
theoretic techniques we can learn about the sensor topology in the home (i.e. learn an
adjacency matrix) which enables us to determine the combinations of sensors that will be
useful for classification ahead of time. As a result we can achieve classification performance
better than that of the exhaustive approach, whilst only incurring a small cost in terms
of computational resources. We demonstrate our results on several datasets, showing that
our method is robust in terms of variations in the layout and the number of residents in
the house. Furthermore, we have incorporated the adjacency matrix into the CRF learning
framework and have shown that it can improve performance over multiple baselines.

Keywords: Machine Learning, Digital Signal Processing, Smart Homes, Activity
Recognition, Activities of Daily Life, Unsupervised Learning, Meta Learning.

1. Introduction

The concept of a ‘smart home’ is that a number of di↵erent sensor technologies may
be combined to build a picture of how we live in our homes. This information can then

Email addresses: niall.twomey@bristol.ac.uk (Niall Twomey),
tom.diethe@bristol.ac.uk (Tom Diethe), ian.craddock@bristol.ac.uk (Ian Craddock),
peter.flach@bristol.ac.uk (Peter Flach)

Preprint submitted to Elsevier January 3, 2017

be used to detect medical or health-care issues. For example, such technology could help
by predicting falls, detecting strokes so that help may be summoned (requiring real-time
responses), analysing eating behaviour and whether people are taking prescribed medication,
or detecting periods of depression and anxiety so that interventions using computer based
therapy could be put in place (o↵-line assessment).

The Sensor Platform for HEalthcare in a Residential Environment (SPHERE) Inter-
disciplinary Research Collaboration (IRC) has developed a multi-modality sensing platform
for collecting data from 100 houses in the Bristol area [1, 2, 3]. The overall architecture,
which follows a clustered-sensor approach, is currently installed and running in a real house
in Bristol (the SPHERE House). We currently do not have long-term data available from
the SPHERE house that is available for public release, so instead focus on publicly avail-
able activity recognition and smart-home data [4, 5]. Since 2007, the Centre for Advanced
Studies in Adaptive Systems (CASAS) research group has been collecting data from homes
with various di↵erent sensor layouts and di↵ering numbers of residents (see e.g. [6, 7, 8]).

Even though activity recognition is a sequential classification problem, the requirement
for models to explicitly model the sequential nature of the data (with e.g. Hidden Markov
Models (HMMs) or Conditional Random Fields (CRFs)) can be mitigated by automated
segmentation of sensor data, assuming that su�ciently expressive features can summarise
a wider context. Applying classification algorithms to segmented windows has obtained
state-of-the-art performance in activity recognition with accuracy in the region of 80-90%
depending on the labelled activities and segmentation algorithm [9, 10, 11, 12, 13, 14, 15].
Attribution of activities to residents is still a challenging task, in particular for bathroom-
based activities. Many segmentation algorithms have been investigated, with näıve segmen-
tation incorporating sliding time/size windows over sensor events, and more sophisticated
approaches utilising classifiers/rules [16, 17, 18, 19, 20], and practitioners have investigated
a wide range of classification models applied, e.g. Logistic Regression (LR), Support Vector
Machines (SVMs), decision trees [9, 10, 11, 12, 13, 14]. In real-time/online learning set-
tings, structured models provide a natural means of projecting historic context to newly
arrived sensor events without having to construct and wait for the arrival of the full data
segments. Such approaches make a prediction for each new example and are, in general,
harder classification tasks which we investigate here.

A set of sensors that are binary in nature (e.g. on/o↵ motion sensors or open/close door
sensors), may be represented with logical conjunctions of the sensor states. This is a reason-
able feature extraction methodology as complex activities will generally not be identifiable
with isolated sensor activations. It is also reasonable to prefer that these conjunctions are
derived from sensors that are geographically close, because long distance conjunctions are
unlikely to be meaningful. As an example, it would seem unreasonable for the probability
of a ‘cooking’ activity to be increased by the detection of motion in a distant bathroom.
In this work we describe methodologies to automatically learn the topology of sensing envi-
ronments. With these techniques complex features can be extracted from sensor data, and
so-called ‘spurious correlations’ such as the one mentioned above can be eliminated by using
the learnt topology as a means of regularising the adjacency matrix. Finally, we believe that
adjacency matrices provide a facility for constructing high-level features that are suitable for

2

transfer learning between smart houses. We will see later that in general, learnt adjacency
matrices are densely connected within rooms, but sparsely connected between rooms. Con-
sequently, the adjacency matrix facilitates the extraction of important localised information
from specific jurisdictions of the smart home that are only weakly connected to the layout
of the residence.

A Radial Basis Function (RBF) kernel can be seen as computing an exhaustive set of
sensor conjunctions (up to infinite degree due to the ‘kernel trick’) [21]. However, kernel
methods are a poor choice in this setting due to the streaming nature of the data. If sensor
combinations are considered exhaustively during training, classifiers might put weights on
spurious sensor combinations caused by residents active in di↵erent parts of the house. If
there are common patterns of activity in distant regions of the house (such as one resident
often working in their bedroom whilst another is watching television in the sitting room),
a classifier would be unable to discriminate between these and would learn weights that
incorrectly respect this spurious correlation; a clear example of over-fitting. Secondly, during
testing, if the same pattern of sensor activation were seen, the classifier would be unable to
distinguish which resident(s) are responsible for the observed patterns of activation. This
problem is magnified if the labelling or annotation of the data is imperfect (annotation is
well-known to be a di�cult task in the smart home activity recognition community [22]),
meaning that there may be ambiguity both in terms of which resident is active, and in terms
of which activity is being performed.

If we have access to the sensor locations within the house, such as may be seen in Figure 1,
we could imagine constructing an adjacency matrix of neighbouring sensors. Even with
perfect knowledge of sensor locations within the house, we argue that it is a non-trivial e↵ort
to create a meaningful adjacency matrix automatically or by hand. For example, simply
thresholding the Euclidean distance between pairs of sensors would create an adjacency that
does not respect walls and other constraints on the movement of individuals throughout the
house. Even a hand-crafted adjacency matrix respecting the house layout will likely not be
perfect, since, for example, the exact positions of large pieces of furniture will not be known,
and indeed these may change over time. There are other confounding factors, for example
constructing hand-crafted adjacency matrices is a time consuming process that does not
scale well with large sets of residences, and we often have poor information regarding the
jurisdiction of sensors in the smart home. Instead we advocate automatic learning of these
adjacency matrices directly from the raw sensor measurements as people go about their
Activities of Daily Living (ADL). In principle, this topology could also be updated online
and should adapt if the configuration of the sensors, the house or furniture layout, or change
in residents behaviour.

Once we have a spatial map of the sensor network, we can leverage this in several di↵erent
ways. First and foremost, we may be able to create features that are based on groups of
sensors that are close in terms of the topology of the house. This would mean that we could
reduce the risk of spurious correlations such as those mentioned previously. If needed, the
spatial map could also allow tracking of the residents, which would allow us to separate
the streams of sensor data that are related to each resident. One could also potentially use
knowledge of the topology to help design better sensor placements. In this paper we focus

3

Figure 1: Sensor layout of the CASAS twor.2009 dataset.

on the first two of these: generating features based on groups of sensors that improves the
representation and hence performance on the activity recognition task.

Note that one can in principle take every possible pair, triplet, and higher order con-
junctions of sensors (usually referred to as ‘N -grams’ in the text classification literature), of
which the conjunctions found by the adjacency method would be a subset. This would be
equivalent to using a polynomial kernel of degree N in a kernel-based classifier [21]. Since
the set of possible N -grams at any given point in time is limited to the power-set of size N
of observed sensor combinations, this exhaustive approach is actually feasible to compute
for reasonable N . However, as we will show, this method is liable to over-fitting due to
spurious correlations.

1.1. Our contribution

Specifically, we provide two methods that automatically learn about the topology of the
sensor network of three smart environments. We demonstrate that these methods yield
adjacency matrices visually appear sensible, and that the approaches generalise over dif-
ferent testbeds. We introduce a new Receiver Operating Characteristic (ROC) [23] based
assessment of adjacency matrices, and employ this to numerically evaluate the performance
against a hand-constructed adjacency matrix for one of our test scenarios.

We then describe how these can be used to construct restricted feature functions for a
CRF classifier. We demonstrate that the use of adjacency matrices can be viewed as a means
of regularisation in the classification problem and perform empirical evaluation showing that
the classifiers that use adjacency matrices outperform the baseline methods. We show that
this approach can assist in learning under ambiguous labelling without having to resort
to manually segmenting data, which can greatly reduce the amount of pre-processing time
expended by researchers.

4

In summary, our work demonstrates that adjacency matrices that accurately describe the
e↵ective topology of smart environments can be estimated from raw sensor data, and that
informing learning routines about this e↵ective topology can improve activity recognition
performance.

2. Materials and Methods

We first present details of the datasets being studied, and then describe the feature
representation, pre-processing, and activity models that we will be using in our experiments.

2.1. CASAS Datasets

We have analysed datasets from the CASAS research group 1 [6]. We primarily focus on
the twor.2009 dataset because it poses a di�cult multi-class and multi-resident problem
with a high proportion of the data annotated. The data was collected over a period of
approximately three months, during which two residents were living in the apartment. In
total, 13 activities are labelled, eight of which are personalised to specific residents.

The testbed floor-plan and sensor layout are shown in Figure 1. This testbed consists of
six families of sensor: 1) 51 motion sensors; 2) 9 door sensors; 3) 7 light switch sensors; 4) 2
water flow sensors; 5) 1 stove-top burner sensor; and 6) 1 item sensor. The motion sensors
are Passive Infra-Red (PIR) sensors that are distributed evenly throughout the testbed, and
these are dispersed at distances of approximately two metres from one another. Door sensors
can be found at the entrances to the house, on the doors to rooms, and on the cupboards in
the kitchen and wardrobes in the bedrooms. These sensors will trigger as residents perform
their ADLs.

An example of the data captured is shown in Table 1 which presents four columns that
describe the events as they occurred in the datasets 1) the time-stamp; 2) the sensor
identifier; 3) the sensor state; and 4) the change in activity label (if appropriate). Each row
in the table is collected when the resident has interacted with the sensor, and as such the
data are atomic and asynchronous.

One of the long-term objectives of our research involves the wide-scale deployment of
sensor networks in residential environments [24]. As such, we would prefer to learn activity
recognition models with minimal pre-processing e↵orts. Many datasets provide raw data
files in the format of Table 1. However, this representation can lead to somewhat ambiguous
sensor-activity associations, e.g. does the sensor activation ‘m33 on’ from Table 1 belong to
the R1 Work activity or to the R2 Sleep activity? In order to help classification models
answer these kinds of questions, small samples of pre-segmented activities are sometimes
provided alongside the raw data files (as is the case with many of the CASAS datasets), where
the interwoven activities R1 Work and R2 Sleep have been separated by hand. One of the
objectives and contributions of this paper, however, is that our techniques can learn about
the topology of the home, which when used to inform classification models, can automatically
achieve this segmentation which in turn can reduce the burden of hand-segmenting these
datasets.

1
http://ailab.wsu.edu/casas/datasets/

5

http://ailab.wsu.edu/casas/datasets/

Table 1: Example of a sensor event file.

Date/Time Sensor ID State Activity Label

· · · · · · · · · · · ·
2009-02-02 07:15:16 m16 on R1 Work begin
2009-02-02 07:15:22 m14 o↵
2009-02-02 07:15:23 m31 on R2 Sleep begin
2009-02-02 07:15:28 m33 on

· · · · · · · · · · · ·
2009-02-02 07:20:55 m14 on
2009-02-02 07:20:56 m30 o↵ R2 Sleep end
2009-02-02 07:21:00 m31 on
2009-02-02 07:21:03 m15 o↵ R1 Work end

· · · · · · · · · · · ·

Table 2: Steady-state and state-change representations.

Steady-state State-change
Raw data m01 m02 m03 m04 m01 m02 m03 m04

m01 on 1 1 1 0 1 0 0 0
m02 o↵ 1 0 1 0 0 -1 0 0
m03 o↵ 1 0 0 0 0 0 -1 0
m04 on 1 0 0 1 0 0 0 1
m02 on 1 1 0 1 0 1 0 0
m01 o↵ 0 1 0 1 -1 0 0 0
m03 on 0 1 1 1 0 0 1 0

2.1.1. Feature Representation

A number of di↵erent representations have been used by the CASAS research group
in the past. We focus on two specific representations in this paper which we denote as
the steady-state and state-change representations. Both representations result in a matrix
X 2 Rm⇥n where m is the number of examples, and n is the dimensionality of the data.

The construction of the steady-state representation relies on the fact that when sensor
i turns ‘on’, its value is set to 1 and remains at this value until the ‘o↵’ state occurs (for
doors, 1 represents ‘open’ and 0 represents ‘closed’). Correspondingly, with the state change
representation a value of 1 is set only at the instant the sensor has turned on, a value of �1
is given only when the sensor turns o↵, and values of 0 indicate no change in the sensor’s
state. Examples of both representations are shown in Table 2.

We furthermore encode the day and time into the feature vector by introducing supple-
mentary Boolean columns into the matrix X. Seven columns are introduced to represent the

6

day of the week, and 24 columns are introduced to identify the hour of day. We note that
introduction of such columns is largely arbitrary and likely to be a sup-optimal means of
modelling periodic context of sensors and activities. We draw attention to the potential use
circular statistics for modelling time of sensor activations and activities for activity recogni-
tion problems [25]. The dimensionality of the matrix X grows quickly with the inclusion of
a greater number of sensors. However, we can achieve very good compression by encoding
the matrix in sparse matrix formats.

2.1.2. Pre-processing

Note that not all sensors behave in the same way: for example a motion sensor will tend
to provide an ‘on’ signal when motion is detected, and then only provide an ‘o↵’ signal if
motion is no longer detected (and hence can be ‘on’ for quite some time) whereas a door
sensor has ‘open’ and ‘close’ states that remain as they are until the next activation.

In all experiments, we convert the raw data into an absolute time format, where we
consider a time slice to contain an event if the time-stamp is within a time window of one
second. We chose the time window as this seems to be a reasonable compromise between
aggregation power and the decision horizon (a longer time window would mean that a
training/testing example would contain more discrete activations, but it would also mean
that decisions would be delayed until that time had passed).

There were a number of issues in the data. For example sometimes a sensor would be
reported as turning ‘on’ when the last seen state was also ‘on’ (or ‘o↵’ when last seen as
‘o↵’), and in some cases sensors would never turn ‘o↵’. In such cases it was deemed that the
sensor would have returned to its ‘o↵’ state after 40 seconds. We selected this value with
reference to the distribution of the length of activations over the dataset as much less than
5% of the sensor activations lasted over 40 seconds.

We also treat the di↵erent families of sensors di↵erently. For example, we use the steady-
state representation for the motion sensors, whereas we use the state-change representation
for the door sensors. We argue that the steady-state value of a door is not always meaningful
(one might equally well study or sleep with the door open or closed), but we believe the state
change of a door sensor is significantly more meaningful owing to the fact that a resident
was explicitly required to interact with the sensor at that time.

The resulting steady-state matrix is a sparse matrix with 7,862,131 rows and 65 columns
with 2,904,702 nonzero elements (99.4% sparse). We also used a sensor activation matrix
(the positive version of the state-change matrix described in Table 2 which has 7,862,130
rows and 65 columns with 440,416 nonzero elements (99.9% sparse).

2.2. Activity Model

We will see later how we wish to enhance the feature representation by automatically
learning feature functions that respect the topological adjacencies of the home environment.
Therefore, rather than evaluating a number of possible classification methods, we focus on
the utility gained by incorporating these methods within the CRF model as previous work
[26, 18, 27, 28, 29] has shown the utility of CRF for classification of activities of daily living.

7

CRFs are a structured classification model that learn the conditional distribution of label
sequences. We restrict ourselves to linear-chain CRFs here. Let us formalise our notation
by defining a training example, x 2 Rm⇥n, as a sequence of m sensor events (x = {xi}mi=1),
and y 2 Y to be the corresponding sequence of associated labels where Y is the set of labels.
Each xi consists of n attributes and xi,j describes the jth attribute of the ith example. We will
sometimes adopt the following notation to select, for example, motion sensor m16 explicitly:
xi,m16.

The general model of the linear chain CRF is defined by

p (y|x) = 1

Z(x)
exp

(
NX

j=1

Fj(x,y)

)
, (1)

where

Z(x) =
X

y02Y

exp

(
NX

j=1

Fj(x,y
0)

)
, (2)

is termed the partition function and allows the CRF predictions to follow a true probability
distribution by summing over all combinations of y0, and

Fj (x,y) =
MX

i=1

�jfj (yi�1,yi,x, i) (3)

is the weighted sum of feature functions, fi, of the sequence. Feature functions define a
template of tests conditioned on label hypotheses that slide over the sequences. Each feature
function takes as arguments the previous and current labels (yi�1, yi), the full sequence of
observations (x) and the current position of the sequence (i). The final parameter informs
the model of the index of the current in the label being classified and is required as the CRF
may utilise features from the entire sequence of observation.

In many applications the output of these feature functions is binary, although this is a
limitation of CRFs models. An example of a feature function for activity recognition in the
twor.2009 dataset may be (u, v 2 Y):

fj (u, v,x, i) =

(
1 if u = v = cook ^ xi,m16 = ‘on’

0 otherwise
(4)

This feature function returns 1 if there is currently motion in the kitchen and if the
previous and current labels are both cook. The feature functions can be more expressive
than sensor activations taken in isolation, as they may consist of a conjunction of tests
that span multiple time steps and multiple attributes. A natural question to ask is how to
determine these feature functions for activity recognition and we discuss this and similar
matters in the next section.

Each feature function has a weight, �j, associated with it and these weights are learnt

8

through optimisation procedures such as Stochastic Gradient Descent (SGD) or other quasi-
Newtonian methods [30]. We have employed an adaptive sub-gradient algorithm “ADA-
Grad” [31] to optimise our CRF models as this algorithm provides strong convergence guar-
antees, converges very quickly and is appropriate for online estimation, in particular for
sparse data. The partial derivative of the likelihood function, L (D), is taken with respect
to the jth attribute which yields

�

��j
L (D) = bE [fj]� E [fj] , (5)

where bE [fj] is the expected value under the empirical distribution of the feature fj, and E [fj]
is the expected value under the model distribution of fj [32]. Equation 5 will equal zero when

learning has converged, and so the CRF will have learnt a model in which bE [fj] = E [fj].
This implies that the model has been calibrated against the training data.

2.3. Learning Feature Functions

2.3.1. Background

Our classification models, as a preliminary step, exploit the freedom permitted by CRFs
and enhance the feature space from the steady-state representation described earlier. This
is achieved by decomposing the feature functions into a product of two separate feature
functions, one of which depends on x and the other on y:

fj (yi�1,yi,x, i) = fx,j (x, i)⇥ fy,j (yi�1,yi, i) (6)

Here fx,j and fy,j are the functions which only consider the observations and the labels
respectively. As an example, the feature function shown previously in Equation 4 can be
represented as

fx,j (x, i) =

(
1 if xi,m16 = ‘on’

0 otherwise
(7)

fy,j (u, v, i) =

(
1 if u = v = cook

0 otherwise
(8)

Using the steady-state feature representation, sets of sensors may be concurrently active.
Our feature generation method first selects the activated elements of xi

(s = {j|xi,j = ‘on’}) and then enumerates over the possible conjunctions of activated sen-
sors. This yields a set of feature functions that depend on x. These fx,j are then generalised
over pairs of tags (u, v 2 Y) as these examples occur in the training data. Together, these
create fj.

To enumerate the conjunctions of the set of activated sensors, s, we compute its power-set
(2s). For example, if s = {m15,m16}, the set of features considered by our learning algorithm

9

are

2{m15,m16} = {{} , {m15} , {m16} , {m15,m16}} . (9)

Each individual element in this power-set has an associated weight whose value is opti-
mised in training. Note also that we include the empty set in our enriched representation.
Feature functions must dependent on at least one y in order to contribute to inference, but
no such requirements are imposed on x. Therefore, we can consider the weights associated
with the empty set of features as ‘bias’ terms. The utility of this approach is furthermore
strengthened by considering the day and time values (in this case d1 and h1 respectively):

2{h1,d1,m11} = {{}, {h1}, {d1}, · · · , {h1, d1,m11}}. (10)

With this representation we obtain a rich set of features that describe the activity com-
prehensively. Time dependence is partially encoded using the original set of activated sensors
s. Our representation, by virtue of constructing features that explicitly consider time-based
parameters with every sensor event, should learn a set of specialised classification weights
that improve classification performance. Indeed, because we can view our enhanced feature
functions as logical tests, our approach corresponds to utilising a polynomial kernel on the
steady-state feature representation [21, 33]. However, due to our sparse input data, feature
function indexing scheme and for reasons discussed later, we will instead call this approach
the power-set method.

For a given set of activated sensors, s, its power-set will consist of 2|s| elements and
so its feature representation grows exponentially with respect to |s|. In general, given our
sparse dataset, only a small number of sensors are activated together. Occasionally, how-
ever, more than ten sensors may be active at the same time. Computing the exhaustive
power-set and learning weight parameters for all possible feature combinations becomes
prohibitively time consuming as this can result in a maximum of 2N elements (N > 51 for
the twor.2009 dataset once the date and time features are incorporated). Therefore, we
introduce a cardinality-restricted power-set, Pc (2s), in which elements whose cardinality is
greater than c are removed. This can be interpreted as setting the degree parameter in
polynomial kernel methods.

Pc (2
s) = 2s, s.t. |z| c, 8 z 2 2s (11)

2.3.2. Imposing Topological Constraints on Feature Functions

So far we have described how we enhance our feature representation, but the näıve imple-
mentation of this may learn spurious associations in the data. Consider an example where
two residents are active in the smart home: one resident is in his bedroom working and the
other is in the kitchen preparing a meal. While this combination may occur frequently in the
dataset we would prefer that our model would only construct conjunctions within localised

10

ALGORITHM 1: Split a sequence of sensor activations into parallel and contiguous
streams.

Input: Input, x; adjacency matrix, A; cardinality, c.
Output: Contiguous sensor activations, sequences.

1 sequences []
2 while x is not empty do
3 sequence []
4 seed first element of x
5 N Aseed // The neighbourhood N around seed.

6 for i 1 to |x| do
7 s {}
8 repeat
9 v xi \N // Select the sensors that intersect with N.

10 if |v| 6= 0 then
11 N N [Av // Grow N to accommodate the intersection.

12 s x [v // Accumulate sensors within N.

13 remove v from xi

14 until |xi \N| = 0
15 sequence [sequence,Pc (2s)]
16 N Avi8vi 2 x

17 sequences [sequences,sequence]

18 return sequences

regions of concentrated activity (i.e. we would prefer two parallel streams of independent
sensor activations here: one for the bedroom only, and the second for the kitchen only).
The reason for this preference is that, in general, we do not believe that sensor activations
within the kitchen should necessarily influence the classifier’s belief about activities being
performed in the bedroom. Defining ground truth functional regions in the smart home
has been used by a number of researchers [34, 35] in the smart environments, but to our
knowledge these have not been explicitly to determine sensor adjacency from data.

We present our partitioning and tracking method in algorithm 1. This algorithm assumes
that an adjacency matrix, A, is available and we describe two methods that can derive this
in the next section. We start by randomly selecting a sensor activation, x, from the first row
of the sequence x (i.e. x ⇢ x1). Then, by querying the adjacency matrix, the sensors which
surround x are added to a set Ni. The purpose of Ni is to define a neighbourhood of sensors
that surround a region of localised activity at a particular time point. We then remove x
from x1, and repeatedly select the remaining components of x1 that intersect with Ni. This
algorithm will, by using the adjacency matrix, separate out distant (in terms of adjacency)
sequences of parallel sensor activations in the smart home. The principal utility of this is
that when multiple residents are performing activities concurrently, the sensor activations
in the kitchen, for example, can be filtered so as not to a↵ect the predicted activities in the
bedroom. As this algorithm reduces the e↵ect of irrelevant sensors in prediction, we view

11

our approach as a form of graph-based regularisation.

3. Unsupervised Learning of Adjacency Matrices

In this section we describe two methods for automatically constructing adjacency matri-
ces – one based on Cross Correlation, and the other based on Mutual Information between
pairs of sensors. These are two of many possible methods that have been chosen from signal
processing and information theory respectively, but as we will see both methods are able to
achieve good performance.

3.1. Cross Correlation based adjacency

Cross Correlation (XC) is a measure of similarity of two waveforms. By permitting a
time lag, l, between the signals, the cross correlation for lag l between two signals X and Y
can be computed with

CX,Y,l =
E [Xi � µX]

�X

E [Yi+l � µY]

�Y

=
E [(Xi � µX)(Yi+l � µY)]

�X�Y
. (12)

where µX = E[X], �X =
q

E
⇥
(X � µX)

2⇤ and similarly for Y .

3.1.1. Cross Correlation for sparse binary/ternary data

Assume now that our sensor readings are arranged in a matrix X 2 Rm⇥nx with the
m readings in rows and nx sensors in columns. We are then correlating this with another
matrix Y 2 Rm⇥ny with the same number of readings but a possibly di↵erent number of
sensors. In our case, Y will be a time-lagged version of X so nx = ny. We further consider
two cases: that the matrix consists of the sensor ‘on’ events only and hence is binary (0, 1);
the matrix consists of sensor ‘on’ and ‘o↵’ events and hence is ternary (�1, 0, 1).

The näıve computation of correlation between two signals requires that first the mean is
subtracted from each signal, and then the inner product is normalised by the product of the
standard deviations. For sparse binary data and ternary data, these computations would
be extremely slow, since removing the mean would make the data matrices dense, and then
the computation time would be O(mnxny).

Defining sx = 10
mX,µx = sx

m ,µy =
sy
m where 1m is the vector of all ones of length m, we

can compute the numerator simply as:

N = X0Y �
�
µ0

xµy

�
(13)

If we now define � as the Hadamard product between two vectors or matrices, Zx =p
|X|� (µx � µx) and Zy =

q
|Y|�

�
µy � µy

�
, then we can compute the denominator

as:

D = mZ0
xZy (14)

12

Note here that by taking the absolute values of the matrices X and Y, the computation of
the standard deviation will be correct for both binary and ternary data.

And finally the correlation is given by C = N↵D where ↵ is the element-wise division
operator, i.e. (for vectors) x ↵ y ⌘ (x1, . . . , xn) � (1

y1
, . . . , 1

yn
). For our sparse data the

complexity of this method is O(nnz(X)nnz(Y) where nnz(·) is the number of nonzero
elements in the matrix. Since the sensor data is extremely sparse after converting into the
time base (typically ⇠ 99.9% sparse for the ‘sensor on’ events and ⇠ 99.8% sparse for the on
and o↵ events), this represents a significant speedup. Note also that a fast update scheme
could be created since the new denominators will scarcely di↵er from the old ones and so, to
a high degree of accuracy, need not be recomputed at all, and the numerator update is simply
done by adding a row to X and Y. For the purposes of this study the computations were
fast enough since computing the full Cross Correlation on the entire twor.2009 dataset
on a standard desktop PC (Intel i7 processor) took less than two seconds.

3.1.2. Creating the adjacency matrix from the Cross Correlations

Consider two adjacent functioning motion sensors. If an individual were to pass them
back and forth at a constant velocity, and the motion sensors were trigger at an exact
distance2, we would find that the XC between these sensors would be equal for positive and
negative lags. Since for the purpose of determining adjacency we do not actually care which
direction the person is moving in, we can treat positive and negative lags equally. However,
we argue that the larger the lag, the less likely the correlation is a ‘true’ correlation, in the
sense that it is caused by the same person moving past the sensors.

Hence we now have a set of correlation coe�cients at di↵erent lag values from �L : L
where we define L as the maximum permitted lag, giving a total of 2L + 1 lags. For each
pair of sensors, there are various ways of summarising this information, such as:

• The maximum: ĈX,Y = maxl CX,Y,l

• The absolute maximum: ĈX,Y = maxl |CX,Y,l|

• The mean: ĈX,Y = 1
L

P
l CX,Y,l

• The median: ĈX,Y = medl CX,Y,l

• Weighted sum: ĈX,Y =
P

l w(l)CX,Y,l for some weighting function w(l) : R! R

We evaluated each of these selection methods, as well as the individual lags separately. For
the weighted sum, we used the following weighting function:

w(l) = exp(��|l|), l = �L : L. (15)

This increases the importance of correlations found at shorter lags exponentially over both
directions in time. Since time has been discretised to one second, a value of � = 1 gives a

2although this assumption is violated, in practice the variations should average out

13

reasonable shape to the weighting function (the e↵ect of lags diminishes to almost zero at
l = ±5). This will be referred to henceforth as the Weighted XC (WXC) method. We found
the WXC method to be the most promising way of summarising the lagged XC information,
and as such will only report results using this method.

Finally, the adjacency is formed using function Ai,j = u�(Ci, j) where u�(·) : Rn⇥n !
{0, 1}n⇥n is the Heaviside step function [36] for a given threshold �. It remains to determine
the optimal threshold � for a given dataset. This depends on the density of sensor nodes,
as well as the distance between the nodes: for a densely populated sensor layout, one would
expect a more densely connected adjacency matrix. We use the heuristic that on average a
sensor node will be connected to itself and a few other neighbours, and hence choose the first
� that results in an an average graphical connectivity of less than five. Empirically, this was
su�cient on the three datasets that we tested on (see subsection 4.1) which are of di↵ering
natures, so this heuristic seems reasonable. Note also that if we plot the proportion of rows
in the steady-state representation of the twor.2009 dataset as a function of the number
of simultaneous activations, we see that most events involve 4 or fewer sensors, which gives
further justification to this method.

3.2. Mutual Information Based Adjacency Learning

Information theory is the field which quantifies the information content, or entropy, of
random variables. The entropy, H, of a discrete random variable, X, is calculated with the
following equation:

H(X) = �
X

x2X

P (x) log2 P (x). (16)

The most frequent interpretation of this quantity is that it estimates the number of bits
required, on average, to encode the values of X into a message. As this value is derived
from probabilistic quantities, it is possible to also compute the joint and conditional entropy
values of two random variables, X and Y , respectively with

H(X, Y) = �
X

x2X

X

y2Y

P (x, y) log2 P (x, y), (17)

H(X|Y) = �
X

x2X

X

y2Y

P (x, y) log2
P (x, y)

P (y)
. (18)

The quantities from Equations 16, 17 and 18 can be visualised in the form of the infor-
mation diagram shown in Figure 2. The shared mutual dependence between two discrete
random variables, denoted as I(X;Y), is shown in Figure 2 and is known as Mutual Infor-
mation (MI). This can be calculated with the identities from Equations 17 and 18 giving
the following equation

14

H(X) H(Y)

H(X|Y) I(X;Y)

H(X,Y)

H(Y|X)

Figure 2: Venn diagram of information theoretic quantities for two dependent random variables X and Y .

I (X;Y) =
X

x2X

X

y2Y

P (x, y) log2
P (x, y)

P (x)P (y)
(19)

which can be decomposed to a number of equivalent formulations including

I (X;Y) = KL (P (X, Y) kP (X)P (Y)) (20)

where KL is the Kullback-Leibler divergence [37] between two probability distributions.
With this interpretation, we can understand MI as being a measure of the similarity of the
probability distributions P (X, Y) and P (X)P (Y), i.e. a measure of the extent to which
X and Y are dependent. MI is a non-negative metric. Larger values indicate more pro-
nounced mutual dependence between the random variables, and MI will be zero if and only
if there is no shared information between the two random variables. MI is also a symmetric
measurement because I (X;Y) ⌘ I (Y ;X).

The intuition behind using MI for learning adjacency matrices is that, using the steady-
state sensor representation, neighbouring sensors should depict similar activation patterns,
i.e. the sensors should both be ‘on’ and ‘o↵’ at similar times; in e↵ect we hypothesise that
the state of one sensor should inform us about the states of its neighbours. Therefore, one
might expect neighbouring sensors to yield a larger MI than that calculated for non-adjacent
sensors.

Given a set of sensors, S, the pairwise MI between all pairs of elements in this set is
computed according to Equation 19. The computed values are used to populate the matrix
A 2 RM⇥M

+ in which Ai,j = I (Si;Sj). The values taken by the elements of this matrix are
positive but are not subject to an intrinsic upper bound. Intuitively, the larger the value
the more information is shared between the sensors.

3.2.1. Adjacency Threshold Selection

Previously we stated our preference that only adjacent sensors contribute in the decision
making process, and in order to accommodate this, a function which performs a threshold is

15

constructed t : RM⇥M ! {0, 1}M⇥M . We term A as the soft adjacency matrix from the MI
method and t (A) is its associated hard adjacency matrix. Note that the method outlined
for the WXC adjacency methods is not appropriate here since the elements of the WXC
matrix are normalised and bounded (between +1 and �1) whereas those from the MI are
not.

Our threshold selection method exploits the understanding that, on average, pairs of
sensors will be non-adjacent. A näıve threshold selection method may consider the mean
of the whole matrix, but this may not elicit a viable threshold because the magnitude of
the elements depends strongly on how many of their instances were observed. Therefore,
our threshold selection method derives a threshold matrix T 2 RM⇥M that accommodates
the relative range of values in soft adjacency matrices. We first compute the vector of
expected values along the rows and columns of the soft adjacency matrix, i.e. E [Ai,:] and
E [A:,j], i.e. the average information shared between a sensor and S. The elements of this
vector represent the expected MI between the specific sensors and the remaining sensors. To
determine whether sensors Si and Sj are adjacent we compute the mean of their expectations

Ti,j =
E [Ai,:] + E [A:,j]

2
(21)

and perform the test

t(Ai,j) =

(
1 if Ai,j > Ti,j

0 otherwise
(22)

4. Experiments

In this section we discuss the experiments we use to evaluate the algorithms discussed
in the earlier sections.

4.1. Unsupervised Sensor Adjacency Learning

We appraise our adjacency learning approach on three CASAS smart-home datasets:
twor.2009

3 [6], tokyo4 [7] and aruba
5 [8]. We chose these three datasets in order to

test the robustness of our adjacency learning algorithm in various scenarios, since they di↵er
in layout, environment (home/work), and number of occupants.

The twor.2009 dataset was obtained in a multi-resident environment in which two
residents performed their normal daily activities. This smart home spans two stories and
much of the dataset is annotated. This dataset forms the basis of our activity recognition
experiments. The tokyo dataset consists of sensor events collected in a smart workplace.
This testbed di↵ers intrinsically from the twor.2009 dataset in that the majority of the

3
http://ailab.wsu.edu/casas/datasets/twor.2009.zip

4
http://ailab.wsu.edu/casas/datasets/tokyo.zip

5
http://ailab.wsu.edu/casas/datasets/aruba.zip

16

http://ailab.wsu.edu/casas/datasets/twor.2009.zip
http://ailab.wsu.edu/casas/datasets/tokyo.zip
http://ailab.wsu.edu/casas/datasets/aruba.zip

sensors are in a relatively open-plan space. Furthermore, nine employees participated in this
dataset. Finally, the aruba dataset is a single-resident smart home in which the resident
is regularly visited by their immediate family. One interesting aspect of this dataset is that
are two categories of motion sensors: 1) localised motion sensors with a small sensing
jurisdiction; and 2) wide-range motion sensors which cover a much wider jurisdiction of the
floor-plan.

4.2. ROC Analysis of Adjacency Matrices

There are several ways to compare adjacency matrices for graphs with the “fixed cardi-
nality vertex sequence property” (meaning that the number of vertices is fixed and the order
is the same for both graphs) [38]. Given two adjacency matrices, Mantel’s test of the null
hypothesis of ‘no association’ between the two matrices is the most commonly used [39].
However, it has been established that the Mantel test lacks a clear statistical framework
specifying fully the null and alternative hypotheses, and in particular can be flawed in the
presence of spatial auto-correlations [40], which is certainly the case for this application.

This motivated to introduce the use of Receiver Operating Characteristic (ROC) analysis
[23] to compare adjacency matrices. The WXC and MI adjacency learning routines yield
real-valued numbers which we sort in ascending order as larger values indicate a higher
likelihood of adjacency. Performing ROC analysis requires a binary adjacency matrix to
be constructed that represents the true adjacency matrix, in which values of ‘1’ indicate
adjacency between sensors. Creating these matrices based only on the floor-plan of the
testbeds is a subjective and potentially noisy process. In particular with the tokyo dataset
we cannot know whether a row of desks might break the adjacency between pairs of sensors,
and with the aruba dataset, we do not know the radius over which the two kinds of motion
sensor are receptive. Hence, we have estimated the “ground truth” adjacency (if such a
ground truth exists) only for the twor.2009 dataset, henceforth termed the ‘hand-crafted’
adjacency matrix, and used this to estimate ROC metrics.

Hence we apply the ROC analysis to the twor.2009 dataset, whilst we demonstrate
the results of our adjacency learning approaches on the aruba and tokyo visually.

4.3. Activity Recognition

We assess our activity classification models on the twor.2009 dataset and perform the
following experiments:

1. Baseline classification without using power-set representation (vanilla);

2. Activity classification using exhaustive power-set representation (exhaustive);

3. Activity classification using hand coded adjacency matrix (hand-coded);

4. Activity classification using the adjacency matrix learnt from the WXC algorithm
(cross-correlation); and

5. Activity classification with MI adjacency learning algorithm (mutual-information).

17

4.4. Performance Evaluation

Given a set of ground truth labels and classifier predictions, we can define predictions as
being True Positives (TPs), True Negatives (TNs), False Positives (FPs), or False Negatives
(FNs). By accumulating these over a dataset, we can compute various accuracy metrics,
including precision, recall as follows:

precision =
#TP

#TP +#FP
(23)

recall =
#TP

#TP +#FN
(24)

Precision and recall are accuracy metrics, and these averaged by calculating their har-
monic mean, which yields the F1 score:

F1 = 2⇥ precision⇥ recall

precision + recall
(25)

The F1 score is a more appropriate performance evaluation metric than accuracy when
dealing with unbalanced class labels [41], and in this work, precision, recall and F1 are used
to evaluate classification performance, c.f. [28].

5. Results

5.1. Learning the Adjacency Matrix

5.1.1. Visual Assessment of Adjacency Matrices

Figure 3 shows the adjacency matrices that were learnt from the twor.2009, tokyo
and aruba datasets. Figures 3a, 3c and 3e show the adjacency matrices that were learnt by
the WXC approach, and Figures 3b, 3d and 3f show the matrices that were learnt from the
MI methods. In these images, blue lines that link two sensors indicate that these sensors were
deemed adjacent by the algorithm. We term the projection of the thresholded adjacency
matrix to the floor-plan the ‘adjacency map’.

Upon visual inspection, the learnt adjacency maps seem reasonable for all testbeds. We
draw the reader’s attention to the twor.2009 and tokyo datasets where we see that the
discovered adjacency maps respect the topological boundaries imposed by the walls in the
o�ce. In particular with the tokyo dataset, the learnt adjacency map is interesting because
a total of nine employees participated in the dataset. Furthermore, given that tokyo is an
o�ce environment, one might expect that many sensors throughout the testbed would be
highly correlated during working hours, and this in turn might be expected to elicit unreliable
adjacency maps. However, we have demonstrated that that our approaches are tolerant to
this. In the lower right hand corner in the tokyo dataset we can see six sensors which are
not densely connected together. We do not know why these sensors are not connected, but

18

(a) twor.2009 WXC. (b) twor.2009 MI.
Cross Correlation Weighted Sum

M0
1

M0
2

M0
3

M0
4

M0
5

M0
6

M0
7

M0
8

M0
9

M1
0

M1
1

M1
2

M1
3

M1
4

M1
5

M1
6

M1
7

M1
8

M1
9

M2
0

M2
1

M2
2

M2
3

M2
4

M2
5

M2
6

M2
7

M2
8

M2
9

M3
0

M3
1

M3
2

M3
3

M3
4

M3
6

M3
7

M3
8

M3
9

M4
0

M4
1

M4
2

M4
3

M4
4

M4
5
D0
1

M01M02M03M04M05M06M07M08M09M10M11M12M13M14M15M16M17M18M19M20M21M22M23M24M25M26M27M28M29M30M31M32M33M34M36M37M38M39M40M41M42M43M44M45D01 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) tokyo WXC. (d) tokyo MI.

Cross Correlation Weighted Sum

M0
01
M0
02
M0
03
M0
04
M0
05
M0
06
M0
07
M0
08
M0
09
M0
10
M0
11
M0
12
M0
13
M0
14
M0
15
M0
16
M0
17
M0
18
M0
19
M0
20
M0
21
M0
22
M0
23
M0
24
M0
25
M0
26
M0
27
M0
28
M0
29
M0
30
M0
31
D0
01
D0
02
D0
04

M001M002M003M004M005M006M007M008M009M010M011M012M013M014M015M016M017M018M019M020M021M022M023M024M025M026M027M028M029M030M031D001D002D004 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) aruba WXC. (f) aruba MI.

Figure 3: WXC (left column) and MI (right column) adjacency maps overlaid on the floor-plans for the
twor.2009 (top row), tokyo (middle row) and aruba (bottom row) datasets.

19

False Positive Rate (1 - Specificity)
0 0.2 0.4 0.6 0.8 1

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC (AUC = 0.879)
Acc @ 0.0267 = 0.945
Acc @ 0.0232 = 0.942

(a) WXC method.

False Positive Rate (1 - Specificity)
0 0.2 0.4 0.6 0.8 1

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC (AUC = 0.843)
Acc @ 0.000236 = 0.944
Acc @ 0 = 0.943

(b) MI method.

Figure 4: ROC curves for weighted adjacency matrices learnt from the WXC and MI methods. The optimal
operating points and the operating point at the thresholds are shown on the plots. The red ⇤ indicates the
optimal threshold position, and the orange � shows the selected threshold.

we speculate that a row of o�ce desks or cabinets might be found in this region and these
may restrict motion locally.

Furthermore, note that in the twor.2009 dataset there are two floors (the ground
floor is the right half of the figure, and the upper floor is the left of the figure), and that the
adjacency maps correctly show connections that span the floors from the top to the bottom
of the stairs.

With the aruba testbed, we also see that the adjacency maps also seem reasonable.
This testbed consists of a hierarchy of motion sensors (some have a much wider jurisdiction
than others). The wide-coverage motion sensors are shown by the shaded regions in the
floor-plan, and those with a narrower field of view are shown as circles. Our adjacency
learning methods cope well with this family of motion sensors, and, in general, the ‘narrow’
motion sensors are reasonably clustered under the jurisdiction of ‘wide’ sensors.

The MI approach generally yields a greater number of connections, in particular near
the living room and upstairs hallway in the twor.2009 dataset. Visually, there is no clear
indication of superiority of one method over the other. In the following section we will see
how these methods compare when used to generate features for classification.

5.1.2. Performance on two resident dataset

We now consider the evaluation of the estimated adjacency matrices with ROC curves
using the method described in subsection 4.2. Figure 4 shows the ROC curves generated
from the weighted adjacency matrices. We can see visually that although the WXC method
obtains a higher Area Under Curve (AUC), the accuracy at the selected thresholds are
equivalent. We note that the threshold selection routines described in the previous section
obtain near-optimal performance in both cases.

We additionally estimated the amount of sensor data required to obtain a stable adja-
cency matrix by selecting increasing proportions of dataset. Note that here we recompute
the entire adjacency matrix with all of the data up till time t, rather than using online

20

time

01
-F

eb
-2

00
9

08
-F

eb
-2

00
9

15
-F

eb
-2

00
9

22
-F

eb
-2

00
9

01
-M

ar
-2

00
9

08
-M

ar
-2

00
9

15
-M

ar
-2

00
9

22
-M

ar
-2

00
9

29
-M

ar
-2

00
9

05
-A

pr
-2

00
9

12
-A

pr
-2

00
9

19
-A

pr
-2

00
9

26
-A

pr
-2

00
9

Ac
cu

ra
cy

0.928

0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

Weighted Cross Correlation
Mutual Information

(a) Accuracy for increasing dataset size.

time

01
-F

eb
-2

00
9

08
-F

eb
-2

00
9

15
-F

eb
-2

00
9

22
-F

eb
-2

00
9

01
-M

ar
-2

00
9

08
-M

ar
-2

00
9

15
-M

ar
-2

00
9

22
-M

ar
-2

00
9

29
-M

ar
-2

00
9

05
-A

pr
-2

00
9

12
-A

pr
-2

00
9

19
-A

pr
-2

00
9

26
-A

pr
-2

00
9

Ar
ea

 U
nd

er
 R

O
C

 C
ur

ve

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Weighted Cross Correlation
Mutual Information

(b) AUC for increasing dataset size.

Figure 5: Accuracy and AUC plots for the thresholded MI and WXC adjacency matrices computed for
increasing dataset sizes (labels on x-axis are in weeks).

updates. Figure 5a shows the accuracy obtained for WXC and MI methods as the number
of training examples increases, and we can see that the MI accuracy increases and settles
to a steady state rapidly, while the WXC method requires more data to obtain the same
accuracy. Figure 5b shows the AUC computed for increasing proportions of the data. The
WXC method achieves a larger AUC with more data. This indicates that WXC adjacency
matrices ultimately achieves better ranking of the pairwise adjacency than MI given a larger
dataset.

Given the unsupervised nature of our adjacency learning techniques, achieving high per-
formance against the hand-crafted adjacency matrix is very encouraging.

5.2. Activity Recognition

Table 3: Performance metrics obtained for all test scenarios, obtained in five-fold cross validation. In general,
we can see that with all experiments, better performance is obtained (for precision, recall and F1) when
informing the classification model with an adjacency matrix.

Method Precision Recall F1 Score

vanilla 0.644 0.636 0.632
exhaustive 0.533 0.530 0.521

hand-coded 0.679 0.692 0.682

mutual-information 0.668 0.679 0.669
cross-correlation 0.673 0.684 0.675

Table 3 shows the precision, recall and F1 scores that were obtained for each of the ex-
periments investigated. We can see that the average scores for the exhaustive approach
are significantly lower (by approximately 10-15%) than those obtained by other results.

21

Adjacency-informed CRF models outperform the vanilla and exhaustive models on
all metrics. Interestingly, the hand-coded adjacency matrices perform best, with the hand-
coded adjacency matrix obtaining the best results overall.

In order to see if the di↵erences between the methods were significant, we first performed a
Friedman test [42] on the F1 scores 6. The Friedman test was significant with Q = 143.9, p <
10�10, and hence we performed Nemenyi7 pair-wise post-hoc testing at a (fairly stringent)
significance level ↵ = 0.01. The results are shown in Figure 6, and can be summarised
as follows: the exhaustive method is significantly worse than all of the other methods,
but we cannot reject the null hypothesis that there is no significant di↵erence between the
vanilla, hand-coded, cross-correlation and mutual-information methods.

Figure 6: Multiple comparisons post-hoc Nemenyi Test.

6. Discussion

6.1. Unsupervised adjacency learning

We have presented two unsupervised learning algorithms based on the weighted cross
correlation and mutual information for learning sensor topologies in smart environments.
We have shown that both algorithms perform well and we have shown that the algorithms
are general and perform well on di↵erent datasets.

Figure 3 shows the sensor linkage obtained with the binarised adjacency matrices of
both techniques on three datasets. Upon visual inspection, the set of links obtained from

6The Friedman test is a non-parametric test that is similar to the parametric repeated measures Analysis
of Variance (ANOVA) but does not make the normality assumption that ANOVA does

7Nemenyi test is a post-hoc test intended to find the groups of data that di↵er after a statistical test of
multiple comparisons (such as the Friedman test) has rejected the null hypothesis that the performance of
the comparisons on the groups of data is similar

22

the algorithm seem legitimate. It is particularly interesting that the methods work with the
tokyo dataset (Figures 3c and 3d) because the data were obtained from a nine-person smart
o�ce. One might expect that spurious correlations would occur throughout the network as
participants might adhere to similar patterns of behaviour (e.g. employees may tend to
arrive, depart and have meals at similar times). This could obscure the true adjacency
between sensors, but, on the basis of the output of our algorithms on the three datasets, our
approach seems to be tolerant to this. It is also interesting that the twor.2009 dataset
did not yield spurious links, for example, between sensors in the two bedrooms. The most
frequently occurring activities for both residents in this dataset are sleeping and working,
and these all take place in the residents’ bedrooms. Yet the adjacency learning routine never
connected these sensors together.

We draw attention to a number of other factors. Firstly, it is di�cult to find any
connection between pairs of sensors that are obviously representing an ‘incorrect’ correlation
in the twor.2009, aruba and tokyo datasets (i.e. false positive links). Secondly, a
number of ‘orphaned’ sensors (i.e. sensors which have no connections) can be found in the
datasets (i.e. false negative links). We argue that false positive connections are much less
desirable than false negative connections because false positive connections may lead to
models that predict confidently based on spurious sensor activations (e.g. such a classifier
might credit ‘motion in living room and motion in bedroom’ as deriving from the activity
‘resident 1 is working’). Models with increasing connectivity of this variety will increasingly
begin to resemble the exhaustive class. The presence of false negative connections in the
adjacency will learn models will be more similar to the vanilla category, as the adjacency
learning algorithm has deemed that those sensors are more likely to be independent than
not. We can see from the results table earlier that in terms of subsequent classification
accuracy exhaustive-type models are less desirable than vanilla models.

The primary existing method for comparing adjacency matrices, known as the Mantel
test [39], has been shown to be flawed in the presence of spatial auto-correlations [40], which
motivated our decision to introduce a new method for comparing the quality of adjacency
matrices using ROC analysis. We applied this to the twor.2009 dataset. To perform
ROC analysis, a ‘ground truth’ adjacency matrix is required, and constructing this is a
laborious and imprecise process as it was constructed without reference to the layout of the
furniture in the home (e.g. knowing about the presence of a large table or couch in the
floor-plan may better support the inclusion or exclusion of certain links). We maintain that
our hand-crafted adjacency matrix is su�ciently accurate because, when incorporated into
the CRF learning procedure, models using the hand-coded adjacency matrix performed best
on all metrics.

Figure 5 shows that approximately 1–2 weeks of sensor data is su�cient to obtain a sta-
ble adjacency matrix with the twor.2009 dataset (with regard to steady-state accuracy).
However, it is worth stating that with less than one week of data, an accuracy of ⇡ 92% can
be obtained indicating that the algorithm might cope with changing room layouts. While
the accuracy remains approximately constant for increasing amount of data, the AUC for
the WXC continues to increase with larger proportions of data. This indicates that the
WXC adjacency learning yields a model which achieves a better ranking between sensors,

23

but, around the region of thresholding, both approaches exhibit similar performance. Corre-
spondingly, however, it seems that su�cient information is obtained after approximately one
month for the MI adjacency learning technique, as the accuracy and AUC remain relatively
constant after this time.

It is worth mentioning, however, that by virtue of the ROC analysis, we can measure the
optimality of the threshold selection. Figures 4a and 4b show that the threshold selection
routines described earlier selects values that are very close to the optimal values. This is
an unexpected and pleasing result, and supports the threshold selection methods discussed
previously. The optimality of the threshold selection here assumes equal costs for incorrect
link predictions [43]. Earlier in this section we stated that false negative predictions are
preferred over false positives predictions and so we have, in fact, shown that classification
costs are non-uniform. Given the absence of objective ground truth labels, however, we argue
that assuming uniform mis-classification costs is reasonable as we do not know whether the
hand-crafted matrix consists of a greater number of false positive or false negative links.

We have observed in our analysis that learning adjacency matrices is more reliable be-
tween pairs of motion sensors than between di↵erent categories of sensors (e.g. motion
sensors and door sensors). We believe two factors contribute to this. Firstly, the door sen-
sors are always represented in the state-change representation which will have a significantly
lower count of sensor activations than motion sensors. However, as MI can be interpreted
as measuring the (in)dependence between random variables, it may not be so sensitive to
variable imbalance. Therefore, we believe that the more significant cause of the absence of
linkage between motion and door sensors is that when a resident passes by a door sensor
(e.g. the door sensor in a cupboard in the kitchen) the door sensor will only be activated
when the resident explicitly interacts with the door, as opposed to motion sensors which
will always toggle when a resident passes. This implies that for some sensor varieties, there
is a stochastic element that must be modelled. Our methods have not accounted for this,
and so our algorithms specify that these sensors are independent to the others (i.e. they are
orphaned). We leave the construction of algorithms that can cope with these scenarios as
future work.

6.2. Classification performance

In the previous section, we have shown that incorporating adjacency matrices into the
modelling framework improves classification accuracy and that the improvement is signif-
icant with respect to the exhaustive feature representation. Here we will will expand
further on these points and discuss other means of gauging the performance of the classifi-
cation model.

We first present the output of two classification models on a segment of the sleeping
activity. Here, both residents are asleep in their bedrooms, and occasionally move during
the night, and this is logged in the database. In order to demonstrate the utility of the
adjacency matrix models, we searched for a period of time where only one resident tends to
move at any given time. Given that there is motion only in Resident 1’s room, then, one
would expect a model to predict the activity ‘Resident 1 Sleeping’ with high confidence.

24

00:01:32 00:01:33 00:01:34 00:01:35 00:01:36 00:01:37

0

0.25

0.5

0.75

(a) Example predictions with vanilla

classification model.

00:01:32 00:01:33 00:01:34 00:01:35 00:01:36 00:01:37

0

0.25

0.5

0.75

(b) Example predictions with
hand-coded model.

Figure 7: Sample predictions for vanilla and hand-coded CRF models over the same time period. In
both image the blue and brown traces represent ‘Resident 1 Sleeping’ and ‘Resident 2 Sleeping’ respectively.

In Figure 7, we show the output of the vanilla (Figure 7a) and ground-truth (Fig-
ure 7b) classifiers in this scenario. The blue lines indicate predictions favouring Resident
1 and the brown trace is related to Resident 2. Figure 7a shows that the classifier has
insu�cient evidence on which to distinguish between ‘Resident 1 Sleeping’ and ‘Resident 2
Sleeping’ and the classifier predicts the sleeping activity with probability ⇡ 0.4 to 0.6. We
believe that the reason for this behaviour is that during the training procedure, the classifi-
cation algorithm was presented with many examples where both residents have concurrently
been sleeping. Without reference to the sensor topology, the model was unable to distinguish
between the two residents sleeping behaviour. The classification weights associated with the
motion sensors, therefore, tend to be smaller, and the weights associated to the ‘hour of the
day’ features are significantly higher. As a result of this, the classifier explains the motion
sensor activations as resulting from both residents. For activities which frequently occur in
isolation, this pathology does not occur.

However, the adjacency matrix based methods were able to separate concurrent sensor
activations into contiguous sequences of parallel sensor activations. Using these alongside the
constructed feature functions enabled the learning algorithm to reason about the most likely
activity in a more representative manner during training. Therefore, when testing the model
it can yield more confident predictions. This is illustrated in Figure 7b for the hand-coded
adjacency matrix, where the probabilities toggle between 0 and 1 as movement occurs in
each room.

The previous scenario demonstrated an example where the classifier learnt questionable
relationships between sensors and activities (sensors in Resident 1’s bedroom yielded sig-
nificant probability mass on a prediction for Resident 2). This is similar to the scenarios
described earlier in this paper regarding events in the kitchen a↵ecting predictions in the
bedroom. The previous example explained how this could occur with the exhaustive
feature representation, but we have just shown that these pathologies can also occur with
the ‘simple’ vanilla models. Figure 7 shows that we can mitigate against this by incor-
porating topological domain knowledge into the modelling routine. This can help predictive

25

confidence with both the vanilla and exhaustive models. It is worth reiterating that
we have learnt these representations without having to resort to manually segmenting the
sensor activations.

Furthermore, we observed that when two activities are performed by two residents, the
vanilla model will occasionally predict only one activity as having occurred even when
evidence has been observed for both activities (e.g. if both residents are sleeping, and if
both residents are moving at the same time, the model might predict the sleeping activity
only for one of the residents). We attribute this behaviour to the Viterbi algorithm [44]
which can have the e↵ect of smoothing away variation in the predictions [45]. We once more
submit to the utility of the power-set representation which is shown upon inspection to be
significantly less susceptible to this behaviour. This is due to the ability of being able to
separate out functional areas of activity in the house, as enabled by the adjacency learning
routines.

We have also observed similar pathologies to other researchers in the community in
determining the resident in bathroom-based activities. These were the primary cause of the
errors in prediction as our features are the instantaneous sensor events. We also observed
other patterns which illustrate the di�culty involved with accurate annotation smart home
datasets. During a period wholly annotated as ‘Watching TV’, we have observed that
residents often enter the kitchen for a brief period of time. The classification models, upon
seeing this, tend to predict a sequence of ‘Watching TV’, ‘Meal Preparation’ and when the
resident returns to the living room, the prediction returns to ‘Watching TV’. We do not
find the prediction particularly representative here (as it could be argued that the resident
is in fact ‘Watching TV’ and ‘Preparing a Meal’ concurrently), but nor do we believe that
the annotation is particularly accurate either. Instead, we would favour a label which with
demonstrate a superposition of both activities at the same time, but this is open for debate.

We believe that our techniques can be used by other sequence classifiers, e.g. HMMs,
with the adjustments outlined here. Standard HMMs learn the joint distribution of the
observations and labels, with the assumption that emission probabilities are uncondition-
ally independent at all time points. This assumption is violated if structure is imposed on
the features. General loopy inference techniques can perform inference on the new struc-
tures, but with a significant increase in time complexity. A number of methods, such as
Tree-Augmented Näıve Bayes (TAN) [46], o↵er a middle-ground between assuming com-
plete independence and dense dependence between features for such model classes as näıve
Bayes and HMMs. It can be shown that by relaxing certain restrictions on the structure
of the features, exact inference can still be achieved e�ciently. If the connectivity of the
adjacency matrices is appropriately restricted, we believe that the methods outlined in this
paper could be applied to HMMs. CRFs (and non-sequential LR) are not subject to this con-
sideration during inference because they model the conditional distribution of labels given
the observations, i.e. p(y|x), and this form is agnostic to the particular form and structure
of the features.

26

7. Conclusions and Future Work

We have described two methods that attempt automatically learn about the topology
of the sensor network and have shown how adjacency matrices between sensors can be con-
structed from these. We demonstrated that the learnt adjacency matrices for both methods
have good agreement with a hand-constructed adjacency matrix and that our threshold
selection is near-optimal. We then outlined how the adjacencies can be used to construct
feature functions for a CRF classifier. Our empirical evaluation showed that the CRF clas-
sifier that uses these adjacencies outperforms two baseline methods: a vanilla method that
treats sensors as independent, and an exhaustive approach that takes the power-set of size
N of all sensors. Finally, we have demonstrated that our approach mitigates against the
requirement for segmenting data by hand.

Future work will introduce methods that can more satisfactorily cope with learning
adjacencies between varieties of sensor families. An online learning framework [47] which
will reason about the sensor topology and activities being performed will be investigated.
Finally, future work will involve the extraction of features through time which we believe
will be capable of describing trajectories within the residence. We expect this to improve
classification performance of resident identification (e.g. for bathroom-based activities which
are di�cult to classify).

Acknowledgement

This work was performed under the Sensor Platform for HEalthcare in a Residential
Environment (SPHERE) Interdisciplinary Research Collaboration (IRC) funded by the UK
Engineering and Physical Sciences Research Council (EPSRC), Grant EP/K031910/1.

References

[1] P. Woznowski, X. Fafoutis, T. Song, S. Hannuna, M. Camplani, L. Tao, A. Paiement, E. Mellios,
M. Haghighi, N. Zhu, G. Hilton, D. Damen, T. Burghardt, M. Mirmehdi, R. Piechocki, D. Kaleshi,
I. Craddock, A multi-modal sensor infrastructure for healthcare in a residential environment, in: IEEE
International Conference on Communications (ICC), Workshop on ICT-enabled services and technolo-
gies for eHealth and Ambient Assisted Living, 2015.

[2] N. Zhu, T. Diethe, M. Camplani, L. Tao, A. Burrows, N. Twomey, D. Kaleshi, M. Mirmehdi, P. Flach,
I. Craddock, Bridging eHealth and the internet of things: The SPHERE project, IEEE Intelligent
Systems 30.

[3] T. Diethe, P. A. Flach, Smart-homes for eHealth: Uncertainty management and calibration, in: NIPS
2015 Workshop on Machine Learning in Healthcare, 2015.

[4] T. Diethe, N. Twomey, P. Flach, Active transfer learning for activity recognition, in: European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2016.

[5] N. Twomey, T. Diethe, P. Flach, Bayesian active learning with evidence-based instance selection, in:
Workshop on Learning over Multiple Contexts, European Conference on Machine Learning (ECML15),
2015.

[6] D. J. Cook, M. Schmitter-Edgecombe, Assessing the quality of activities in a smart environment.,
Methods Inf Med 48 (5) (2009) 480–5.

[7] D. J. Cook, A. Crandall, G. Singla, B. Thomas, Detection of social interaction in smart spaces, Cyber-
netics and Systems: An International Journal 41 (2) (2010) 90–104.

27

[8] D. J. Cook, Learning setting-generalized activity models for smart spaces, IEEE intelligent systems
2010 (99) (2010) 1.

[9] E. Kim, S. Helal, D. Cook, Human activity recognition and pattern discovery, Pervasive Computing,
IEEE 9 (1) (2010) 48–53.

[10] N. Krishnan, D. J. Cook, Z. Wemlinger, Learning a taxonomy of predefined and discovered activity
patterns, Journal of Ambient Intelligence and Smart Environments 5 (6) (2013) 621–637.

[11] E. Nazerfard, B. Das, L. B. Holder, D. J. Cook, Conditional random fields for activity recognition in
smart environments, in: Proceedings of the 1st ACM International Health Informatics Symposium,
ACM, 2010, pp. 282–286.

[12] A. Fleury, M. Vacher, N. Noury, SVM-based multimodal classification of activities of daily living in
health smart homes: sensors, algorithms, and first experimental results, Information Technology in
Biomedicine, IEEE Transactions on 14 (2) (2010) 274–283.

[13] P. N. Dawadi, D. J. Cook, M. Schmitter-Edgecombe, Automated cognitive health assessment using
smart home monitoring of complex tasks, Systems, Man, and Cybernetics: Systems, IEEE Transactions
on 43 (6) (2013) 1302–1313.

[14] I. Fatima, M. Fahim, Y.-K. Lee, S. Lee, A unified framework for activity recognition-based behavior
analysis and action prediction in smart homes, Sensors 13 (2) (2013) 2682–2699.

[15] L. G. Fahad, A. Khan, M. Rajarajan, Activity recognition in smart homes with self verification of
assignments, Neurocomputing 149 (2015) 1286–1298.

[16] J. Wan, M. J. O’grady, G. M. O’hare, Dynamic sensor event segmentation for real-time activity recog-
nition in a smart home context, Personal and Ubiquitous Computing 19 (2) (2015) 287–301.

[17] D. J. Cook, N. C. Krishnan, Activity Learning: Discovering, Recognizing, and Predicting Human
Behavior from Sensor Data, John Wiley & Sons, 2015.

[18] D. J. Cook, N. C. Krishnan, P. Rashidi, Activity discovery and activity recognition: A new partnership,
Cybernetics, IEEE Transactions on 43 (3) (2013) 820–828.

[19] T. Gu, S. Chen, X. Tao, J. Lu, An unsupervised approach to activity recognition and segmentation
based on object-use fingerprints, Data & Knowledge Engineering 69 (6) (2010) 533–544.

[20] P. Palmes, H. K. Pung, T. Gu, W. Xue, S. Chen, Object relevance weight pattern mining for activity
recognition and segmentation, Pervasive and Mobile Computing 6 (1) (2010) 43–57.

[21] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, Cambridge university press, 2004.
[22] S. Szewcyzk, K. Dwan, B. Minor, B. Swedlove, D. Cook, Annotating smart environment sensor data

for activity learning, Technology and Health Care 17 (3) (2009) 161–169.
[23] T. Fawcett, An introduction to ROC analysis, Pattern recognition letters 27 (8) (2006) 861–874.
[24] T. R. Diethe, N. Twomey, P. Flach, Sphere-a sensor platform for healthcare in a residential environment,

Large-scale Online Learning and Decision Making Workshop.
[25] T. R. Diethe, N. Twomey, P. Flach, Bayesian modelling of the temporal aspects of smart home activity

with circular statistics, in: European Conference on Machine Learning (ECML’15) (to appear), 2015.
[26] K.-C. Hsu, Y.-T. Chiang, G.-Y. Lin, C.-H. Lu, J. Y.-J. Hsu, L.-C. Fu, Strategies for inference mechanism

of conditional random fields for multiple-resident activity recognition in a smart home, in: Trends in
Applied Intelligent Systems, Springer, 2010, pp. 417–426.

[27] E. Nazerfard, B. Das, L. B. Holder, D. J. Cook, Conditional random fields for activity recognition in
smart environments, in: Proceedings of the 1st ACM International Health Informatics Symposium,
ACM, 2010, pp. 282–286.

[28] N. Twomey, P. Flach, Context modulation of sensor data applied to activity recognition in smart
homes, in: Workshop on Learning over Multiple Contexts, European Conference on Machine Learning
(ECML’14), 2014.

[29] J. D. La↵erty, A. McCallum, F. C. N. Pereira, Conditional random fields: Probabilistic models for
segmenting and labeling sequence data, in: Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001, pp.
282–289.

[30] T. Lavergne, O. Cappé, F. Yvon, Practical very large scale CRFs, in: Proceedings of the 48th Annual

28

Meeting of the Association for Computational Linguistics, 2010, pp. 504–513.
[31] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic opti-

mization, The Journal of Machine Learning Research 12 (2011) 2121–2159.
[32] R. Klinger, K. Tomanek, Classical probabilistic models and conditional random fields, TU, Algorithm

Engineering, 2007.
[33] Y. Goldberg, M. Elhadad, splitSVM: fast, space-e�cient, non-heuristic, polynomial kernel computation

for NLP applications, in: Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers, 2008, pp. 237–240.

[34] N. C. Krishnan, D. J. Cook, Activity recognition on streaming sensor data, Pervasive and Mobile
Computing 10 (2014) 138–154.

[35] J. Wan, M. J. OGrady, G. M. OHare, Dynamic sensor event segmentation for real-time activity recog-
nition in a smart home context, Personal and Ubiquitous Computing (2014) 1–15.

[36] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and math-
ematical tables, no. 55, Courier Dover Publications, 1972.

[37] S. Kullback, R. A. Leibler, On information and su�ciency, The annals of mathematical statistics (1951)
79–86.

[38] J. Richiardi, D. Van De Ville, K. Riesen, H. Bunke, Vector space embedding of undirected graphs
with fixed-cardinality vertex sequences for classification, in: Pattern Recognition (ICPR), 2010 20th
International Conference on, IEEE, 2010, pp. 902–905.

[39] M. Fortin, J. Gurevitch, Mantel tests: spatial structure in field experiments, Design and analysis of
ecological experiments. Chapman and Hall, New York (1993) 342–359.

[40] G. Guillot, F. Rousset, Dismantling the Mantel tests, Methods in Ecology and Evolution 4 (4) (2013)
336–344.

[41] F. J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction
algorithms., in: ICML, Vol. 98, 1998, pp. 445–453.

[42] M. Hollander, D. A. Wolfe, E. Chicken, Nonparametric statistical methods, Vol. 751, John Wiley &
Sons, 2013.

[43] C. Elkan, The foundations of cost-sensitive learning, in: International joint conference on artificial
intelligence, Vol. 17, Citeseer, 2001, pp. 973–978.

[44] A. J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,
Information Theory, IEEE Transactions on 13 (2) (1967) 260–269.

[45] K. P. Murphy, Machine learning: a probabilistic perspective, MIT press, 2012.
[46] F. Zheng, G. I. Webb, Tree augmented naive bayes, in: Encyclopedia of Machine Learning, Springer,

2011, pp. 990–991.
[47] T. Diethe, M. Girolami, Online learning with (multiple) kernels: A review, Neural Computation 25 (3)

(2013) 567–625. doi:10.1162/NECO_a_00406.

29

http://dx.doi.org/10.1162/NECO_a_00406

	Introduction
	Our contribution

	Materials and Methods
	CASAS Datasets
	Feature Representation
	Pre-processing

	Activity Model
	Learning Feature Functions
	Background
	Imposing Topological Constraints on Feature Functions

	Unsupervised Learning of Adjacency Matrices
	Cross Correlation based adjacency
	Cross Correlation for sparse binary/ternary data
	Creating the adjacency matrix from the Cross Correlations

	Mutual Information Based Adjacency Learning
	Adjacency Threshold Selection

	Experiments
	Unsupervised Sensor Adjacency Learning
	ROC Analysis of Adjacency Matrices
	Activity Recognition
	Performance Evaluation

	Results
	Learning the Adjacency Matrix
	Visual Assessment of Adjacency Matrices
	Performance on two resident dataset

	Activity Recognition

	Discussion
	Unsupervised adjacency learning
	Classification performance

	Conclusions and Future Work

