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ABSTRACT
Multi-language recipe personalisation and recommendation is an
under-explored field of information retrieval in academic and pro-
duction systems. The existing gaps in our current understanding
are numerous, even on fundamental questions such as whether con-
sistent and high-quality recipe recommendation can be delivered
across languages. Motivated by this need, we consider the multi-
language recipe recommendation setting and present grounding
results that will help to establish the potential and absolute value of
future work in this area. Our work draws on several billion events
from millions of recipes, with published recipes and users incor-
porating several languages, including Arabic, English, Indonesian,
Russian, and Spanish. We represent recipes using a combination
of normalised ingredients, standardised skills and image embed-
dings obtained without human intervention. In modelling, we take
a classical approach based on optimising an embedded bi-linear
user-item metric space towards the interactions that most strongly
elicit cooking intent. For users without interaction histories, a be-
spoke content-based cold-start model that predicts context and
recipe affinity is introduced. We show that our approach to per-
sonalisation is stable and scales well to new languages. A robust
cross-validation campaign is employed and consistently rejects
baseline models and representations, strongly favouring those we
propose. Our results are presented in a language-oriented (as op-
posed to model-oriented) fashion to emphasise the language-based
goals of this work. We believe that this is the first large-scale work
that evaluates the value and potential of multi-language recipe
recommendation and personalisation.
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1 INTRODUCTION AND RELATEDWORK
A plurality of complex factors influence the choices we make when
deciding on which recipes to cook. The occurrence of allergens in a
recipe will render it inappropriate for some users, the personal com-
mitments of other users will lead to total avoidance of some food
categories, and for yet others, embarking on short- and long-term
dietary campaigns will disturb otherwise steady and predictable
eating habits. Indeed, since membership to any categorisation is
non-exclusive and transient, we cannot rely on the existence of a
uniformly acceptable recipe ranking across any subgroup. In this
paper, we concern ourselves with delivering recipe personalisation
models that capture individual preferences.

The formative works in recipe recommendation [11, 12] con-
structed user-based ingredient preferences from historic recipe
interactions and represented recipes by their ingredients. Distances
between users and recipes in the ingredient representation space
can be used to make recommendations using k Nearest Neigh-
bours (k-NN). This is a classic design pattern in the literature
[2, 19, 41]. Because ingredients and recipes are written in un- or
semi-structured forms, they are not necessarily amenable to imme-
diate analysis, and recipe normalisation is known to be beneficial for
downstream tasks [24, 28]. Thus, early work employed ontologies
or knowledge graphs [6, 8, 9], supervised training [28] and scoring
methods [32] to extract clean elements. Most of these approaches
require a labelled set of ‘canonical’ recipe entities (ingredients, tools,
skills) and to date have been evaluated on a single language, which
presents a problem for scaling the approaches to a multi-language
system.

Extracting the quality and quantity of recipes and ingredients [29,
32] is a key precursor in many application areas of food computing,
including healthy recommendation [33]. The multi-modal aspect
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of recipes has shown promise in enhancing cooking procedure
understanding [40] by using auxiliary data such as video [22, 30] or
images [27, 42]. The existing work on leveraging these modalities
for recommendation [17, 34, 35] uses established pre-trained image
models or specific image features (including measures of sharpness,
contrast). Not all of the generic image representation approaches are
suitable for recipe image datasets, which typically consist of images
along with semi-structured text (title, ingredients, steps). Thus,
transfer learning [5], cross-modal training [4, 13, 36], as well as
self-supervised training with weak labels [10], have been proposed
for building recipe image representation.

The application of recipe recommendation models to more than
one language is not unexplored [20, 35], though the scope of these
approaches is limited to two languages and is reliant on manual
intervention for recipe pre-processing. Consequently, the limits
of large-scale multi-lingual recipe modelling are under-explored,
despite the existence of several relevant datasets and platforms op-
erating in several languages [14, 21]. State-of-the-art (SOTA) neural
translation [1, 39] and multi-language Natural Language Process-
ing (NLP) frameworks [26] offer opportunities for bridging these
gaps. To the best of our knowledge, ours is the first comprehensive
work delivering intrinsic language-agnostic pipelines for recipe rec-
ommendation and personalisation across many languages. Towards
this end, our methodological contributions and results are outlined
in Sections 2 and 3, and we conclude on the value, limitations and
future directions of this research in Section 4.

2 METHODS
2.1 Dataset
We consider only the published recipes with valid titles, ingredient
lists, ingredient quantities, and method steps (as well as optional
fields cooking duration, serving size, images). We limit ourselves to
a single online multi-language recipe platform (Cookpad) as we are
unaware of alternative data sources fulfilling our multi-language
requirements.

We employ ten different user interaction types, and each is as-
signed a weight based on its likelihood of indicating future cooking
behaviour estimated from proprietary data. Search data are also
considered. Cookpad’s search seeks to serve the best new recipes
to users based on their query. We have access to the queries, search
result order and recipe clicks. Data fusion techniques are incorpo-
rated to merge the interaction data to the click data arising from
the search histories in our analyses.

2.2 Data Representations
Qualitative Features. The purpose of these deterministic features is
to provide key insights into recipe complexity, completeness, qual-
ity, and regionality. Specifically, we extract the following features:
1. the number of ingredients used; 2. the number of skills used; 3.
recipe image; 4. the number of steps; 5. the number of step images;
6. the ratio of steps to step images; 7. the published year; 8. the
published month; 9. the published time; 10. the author’s identity;
11. the author’s system ID 12. the cooking time; 13. the number of
portions; 14. author’s country.

Normalised Ingredients. Recipe data contains ingredients with quan-
tities in separate fields in various languages. Quantity extraction
quality is not uniform across datasets with certain regional traits,
while the ingredients themselves are written in raw form. For each
language, we split the dataset by spaces, and, ignoring numerical
values, extract a set of 200 common quantity tokens. We then re-
move any ingredients with punctuation or quantity present, and
sort the remaining ingredients by frequency, picking the top 1500
common ingredients as the dictionary.

For inference, the raw ingredient string is matched to an ingre-
dient from the dictionary by tokenising it and finding the largest
common subset of tokens between a candidate normalised ingredi-
ent and the original ingredient. To deal with misspellings we use a
threshold on the cosine distance between word vectors trained on
a recipe corpus using FastText [3]. Our algorithm is unsupervised
and can be applied to all languages with space separation between
words.

Normalised Skills. Pre-trained SOTA language models [26] are de-
ployed to detect verbs in recipe sentences. For a given sentence,
the cartesian product between the sets of detected verbs and ingre-
dients defines all possible ingredient-verb pairs for that sentence,
e.g. ‘slice’ and ‘onion’. We incorporated partial matching and Lev-
enshtein distance to overcome ingredient naming inconsistencies
(e.g.when ‘peppers’ in a recipe step refers to ‘red bell peppers’ from
the ingredient list). We broadcast ingredient-verb pair extraction
over our datasets, extending existing work in skill extraction [42].

LetCI (i),CV (v),CI,V (i,v),CI |V (i |v) andCV |I (v |i) denote a fam-
ily of counting functions for ingredients, verbs, joint ingredient-
verb pairs, and conditional ingredient-verb pairs in recipe sen-
tences. The domain of the random variables are I ∈ {i,¬i} and
V ∈ {v,¬v} (i.e. ‘present’ and ‘absent’). Removing subscripts
for improved clarity, counts are normalised to form distributions
(e.g. P(i,v) = C(i,v)

/ ∑
i′,v ′ C(i ′,v ′)), allowing us to calculate

Mutual Information (MI) (
∑
i,v P(i,v) log P (i,v)

P (i)P (v) ). The summands
are reformulated in terms of positive ingredient and verb occur-
rences since only these counts are available, i.e. P(¬a) = 1 − P(a)
and P(a,¬b) = (1 − P(b |a)) P(a). Denoting the MI matrix as M ∈

R |I |× |V | , the expected MI of ingredient i over associated verbs as
Ev ′∼PV |I=i

[
Mi,v ′

]
, and the expected MI of verb v over ingredients

as Ei′∼PI |V=v
[
Mi′,v

]
, the data-dependent threshold for the (i,v)-th

ingredient-verb pair is defined as

Θi,v = αEv ′∼PV |I=i

[
Mi,v ′

]
+ (1 − α)Ei′∼PI |V=v

[
Mi′,v

]
where α ∈ [0, 1] is a hyperparameter (default value 0.5) that bal-
ances the relative weight of ingredients and verbs in skill selection.
The final set of ingredient-skill pairs is given byV = {(i,v) : Mi,v >

Θi,v ∀ i,v}.

Text Representations. We explore representing recipe text as a bag of
sub-word-units with Term Frequency-Inverse Document Frequency
(TF-IDF) embeddings. The dimensionality of the embedding was
reduced to 300 using singular value decomposition, and we followed
the FastText [3] procedure in sub-word unit selection.
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Image Representations. We used self-supervised training to extract
image representations [10], extending the method to the multi-
lingual setting. We trained a DenseNet-201 [15] model using a
variation of TagSpace [38]. According to this approach, TagSpace
labels in all languages and images are all embedded in the same
shared 300-dimensional space, which leads to similar labels (in the
same or different languages) ending up close to each other in the
shared embedding space. The labels for training were the top 1000
common unigrams and bigrams extracted from recipe titles per
each of the 5 languages. After the model was trained for 40 epochs
on a dataset with 1.5M images and 5k labels, we discard the label
embeddings and run the CNN on all recipe images. The image rep-
resentations are extracted from the global average pooling layer
after the last convolutional layer.

User Representations. In this work, user profiles derive directly
from users’ interaction histories. Let I ∈ RNu×Nr

+ be the (sparse)
user-to-recipe interaction matrix that encodes the interaction im-
portance numerically. Moreover, let µ be the row-wise normalised
interaction matrix, i.e. µu,r = Iu,r /

∑
r ′ Iu,r ′ ∀u, r . Finally, let the

recipe features be embedded in X ∈ RNr×D (c.f. Section 2.2). Using
these definitions, the user features are calculated simply by aver-
aging recipe embeddings over interaction history, i.e. U = µX, and
U ∈ RNu×D .

2.3 Behavioural Models
‘Clickability’ Model. We used a 3-layer feed-forward neural net-
work with ReLU non-linear activation units, dropout, and batch
normalisation as a cold-start. The model is optimised in a pairwise
approach [25] to differentiate between positive (clicked recipes)
and negative (recipes not clicked) recipes. Negatives are sampled
randomly from among the recipes viewed in the search results but
not clicked. We incorporate late context fusion to measure the im-
pact of using query context in ranking. We call this the ‘clickability’
model since it is based on click-through data.

Personalisation Model. LightFM [18] is a framework offering lin-
ear Collaborative Filtering (CF), Content Based (CB) and hybrid
recommendation models. It is known to be strongly performant in
scenarios with sparse and transient data, even for new users with
little interaction history [18]. Our objective in this research is to
establish strong definitive baselines for multi-language recipe rec-
ommendation [7]. Consequently, our future work will develop the
assessment of SOTA recommendation models in this application
area. In LightFM’s setting, given user and recipe embedding matri-
ces (EU ∈ RDU ×K and ER ∈ RDR×K ), user and recipe embeddings
are calculated with XU = UEU and XR = XER . User-recipe affinity
is measured by Su,r = f

(
XU
u · XR

r + b
U
u + b

R
r

)
where bU and bR

are user- and recipe-specific biases, and f (·) is a suitable function
selected based on the task, e.g. logistic. In order to optimise the
embedding matrices and biases, several hyperparameters must be
specified (including learning rate, number of iterations, user and
recipe regularisation, the loss function, sample weights, feature
groups). Owing to the large number of hyperparameters, we take a
sequential approach and use Bayesian Optimisation (BO) [23] on a
validation set to select these parameters.

2.4 Evaluation Procedures

Table 1: The approximate number of users, recipes and in-
teractions available for analysis.

Arabic English Indonesian Russian Spanish Total

Users 2M 3M 6M 2M 4M 18M
Items 0.6M 0.5M 2M 0.5M 0.5M 4M
Events 0.8B 0.2B 4B 0.5B 1M 7B

Table 1 presents dataset size that is available to us in this work.
We stratify interaction data based on event time into four non-
overlapping partially ordered sets named profile, train, validation
and test, denoted Sp ≺ St ≺ Sv ≺ Se . Of particular importance is
the ‘profile’ interactions (Sp ) since these are exclusively used in
creating user profiles (c.f. Section 2.2). Performance is evaluated
with Mean Average Precision (mAP) [31] at k ∈ {1, 20}. Since in
this work we consider a lot of moving parts for our system, we
opted to rely on BO in assessment rather than on ablation studies.

3 RESULTS AND DISCUSSION
3.1 Ingredient and Skill Validation
Our ingredient normalisation algorithm picks up non-trivial pat-
terns in the data. For example, the phrase ‘large sweet strawberries’
is normalised to ‘strawberry’, and ‘large sweet potatoes’ gets nor-
malised to ‘sweet potato’. It is noteworthy that these two similar
phrases are both correctly normalised in different ways by our un-
supervised model. From a quantitative point of view, ingredient
normalisation can match and outperform systems based on manu-
ally maintained ingredients dictionaries across the five languages
considered. We compare performance of our ingredient normaliser
to a system built on top of a professionally-maintained proprietory
ingredient dictionary provided by Cookpad in Table 2. This shows
statistically significant error rates on the dedicated test sets for our
normaliser.

Table 2: Normalisation error rates evaluated by native speak-
ers on each language. Statistical significance results in bold.

Language Arabic English Indonesian Russian Spanish

Baseline 0.4 0.18 0.18 0.14 0.21
Proposed 0.26 0.10 0.12 0.05 0.09

Reduction 0.35 0.44 0.33 0.66 0.57

Table 3 shows discovered skills from all languages, omitting gen-
eral skills such as ‘add’ and ‘mix’. Focusing specifically on English,
the proposed pairings are of high quality and diversity (i.e. ‘debon-
ing fish’ is not a skill that all cooks will employ). The skill quality
on the remaining languages are similar in nature to English, and
translations of ‘peel potato’ and ‘boil water’ can be found in the non-
English columns of the table. Since skills are unstructured and may
be ambiguous or unclear, we designed a small labelled experiment to
evaluate definitive skill detection performance. Training data were
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Table 3: An example of the discovered skill-ingredient pairs across five different languages.

Arabic English Indonesian Russian Spanish

Ing. Skill Ing. Skill Ing. Skill Ing. Skill Ing. Skill
	

�J
K.
�
�
	
®
	
k onion slice air didihkan лук нарезать cebolla cortar

�
�J


�
¯X ¡Ê

	
g fish debone telur aduk морковь натереть agua hervir

Ðñ
�
K ©¢

�
¯ eggs beat margarin panaskan разрыхлитель просеять cebolla pelar

ZAÓ ú


Î
	
« potatoes peel gula pasir aduk картофель очистить ajo picar

h. Ag. X ©¢
�
¯ flour sieve tepung terigu sajikan сыр посыпать harina amasar

acquired using a set of regular expressions and human validation
on recipe title, ingredients and steps, and logistic regression models
were optimised to detect the chosen skills using a bag of words
encoding for each recipe field as features. The dataset contains ≈ 30
times more negatives than positives, yet our method has precision
of approximately 0.5. This indicates that skills can be detected with
reasonable precision with straightforward approaches.

3.2 Case Study 1: Interactions
Since the clickability model is aimed at users without interaction
histories, it is trained with click-through data. Additionally, the
text and image embeddings from Section 2.2 were used for recipe
representations, and a grid search was used to select the model’s
hyperparameters (learning rate, network architecture, dropout).
For personalisation models, BO was used to select model hyperpa-
rameters but also to specify the model type (from CF, CB, or hybrid
models) and recipe representation (from any combination of quali-
tative, ingredient or skill features). We ran BO for 100 iterations and
selected the optimal model based on the performance on validation
sets.

Results for both models are presented in Table 4. High consis-
tency of selected models and representations are obtained, provid-
ing evidence that supports ingredients and skills in recommenda-
tion. Additionally, hybrid models are always selected over CF and
CB by BO. The performance gap between clickability and personali-
sation is due to two main factors. Firstly, since we sample negatives
from the recipes that received new interactions during the test
period, it is likely that most of these recipes are of high quality
(i.e. ‘clickable’) making the task more challenging for content-based
models. Secondly, the pool of negatives covers a diverse set of
cuisines, which makes recommendation easier for models that have
learnt users preferences. Hybrid models are always selected by BO
which consistently rejected CF and CB alternatives, suggesting that
both preference and content are important for the task.

We experimented with a variety of alternate text embeddings
to understand the source of our good personalisation performance.
We found that normalised ingredient and skill were still constantly
selected by BO even when other text embeddings were available
for consideration. This indicates that for the recommendation task
defined, targeted ingredient and skill representations are more
expressive than general text embeddings.

3.3 Case Study 2: Search
In this case study, models are tasked to re-rank candidate recipe
lists that were served from search queries. The served search or-
der is known to be significantly biased [16, 37], and consequently
we expect them to act as an upper bound on performance. Four
rankings are considered in this case study: served order (de-biased),
clickability, personalisation and the biased served order (biased).
Since recipe publication is a random process and served search or-
der is currently a strong function of recency, we can de-bias served
results with randomisation. This establishes an unbiased baseline
for evaluating clickability and personalisation models. BO again
selects between CF, CB and hybrid models.

Table 5 presents the results of the search re-ranking experiment.
We base our clickability results on the context-free model variation.
We found that adding the query context to ranking models does not
substantially improve performance on these metrics since the can-
didates presented to the model necessarily encapsulate this context
already. Our clickability model out-performs baseline significantly
and improved performance is obtained over all languages.

Personalisation out-performs clickability models in all cases,
with average mAP@1 improvements of ≈ 20%. This is a vital metric
in search and measures the proportion of time users engage with
the top-ranked recipe. English is the weakest language for search
personalisation, though it still out-performs baseline and clickabil-
ity, and Arabic registers the highest improvement over clickability.
The interaction experiment has higher base results than search.
Although several factors contribute to this, the key explanation
is that re-ranking small sets of (potentially) similar candidates for
search is more challenging because candidate diversity is lower.

When evaluating search re-ranking against recipe clicks, wewere
unable to surpass the strong bias of served order. However, if in-
stead we evaluate performance against other interactions (e.g. book-
mark, cookplan) the personalisation models out-perform the (bi-
ased) served order by ≈ 10%. Personalisation models surpassing
the strong bias of served search order is noteworthy and high-
lights the appropriateness of our approach to re-rank search results
meaningfully.

3.4 Case Study Summary and Discussion
We tested our models extensively against several popular and com-
petitive baseline methods (including CF and CB) and our proposed
approach was exclusively selected by BO in interaction and search
case studies. Popular text embedding models were also tested, but,
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Table 4: Results of interaction prediction. CF and CB baseline results are not shown since they were rejected by BO.

Language Model spec. Random model Clickability Personalisation

Model Ings. Skills mAP@1 mAP@20 mAP@1 mAP@20 mAP@1 mAP20

Arabic Hybrid ✓ ✓ 0.103 0.246 0.126 0.272 0.397 0.459
English Hybrid ✓ ✓ 0.104 0.248 0.159 0.309 0.280 0.373
Indonesian Hybrid ✓ ✓ 0.090 0.236 0.123 0.272 0.407 0.485
Russian Hybrid ✓ ✓ 0.113 0.258 0.120 0.280 0.369 0.451
Spanish Hybrid ✓ ✓ 0.099 0.245 0.140 0.286 0.408 0.474

Table 5: Results on search re-ranking. CF and CB baseline results are not shown since they were rejected by BO.

Language Served (de-biased) Clickability Personalisation Served (biased)

mAP@1 mAP@20 mAP@1 mAP@20 mAP@1 mAP20 mAP@1 mAP20

Arabic 0.096 0.220 0.169 0.291 0.220 0.340 0.332 0.415
English 0.100 0.218 0.185 0.314 0.205 0.354 0.273 0.404
Indonesian 0.112 0.234 0.186 0.315 0.212 0.334 0.289 0.413
Russian 0.109 0.242 0.180 0.305 0.208 0.341 0.281 0.382
Spanish 0.108 0.230 0.185 0.313 0.217 0.339 0.287 0.400

disappointingly, these did not increase performance due to averag-
ing effects over long recipe text. This exemplifies the value of tar-
geted recipe representations in recipe recommendation. We focused
on reporting qualitative performance measures in this emerging
work, and broader measures (including coverage, qualitative) will
be factored into more mature future presentations. The prime en-
abler of our success is the deliberate integration of SOTA language
models and targeted ingredient and skill recipe representations.

4 CONCLUSIONS
The express objective of this paper was to develop initial under-
standing and expectations in multi-language recipe recommen-
dation. Our analysis, using the most extensive dataset available
for cooking and recipe recommendation, validates all representa-
tions and models with our results suggesting that multi-language
recipe recommendation is suitably modelled with the proposed
methodology. Despite this early work employing linear models for
personalisation, our approach significantly outperforms popular
content-based and collaborative baselines. We believe that we have
established a strong standard for comparing the absolute value of
succeeding multi-language recommendation research, and our fu-
ture work will expand into three key areas. First, we will deploy our
models to production systems and measure the utility of our meth-
ods in live experiments. We will then embark on an exploration
of sophisticated non-linear neural recommendation frameworks
and evaluate their merit. Finally, we will explore end-to-end cross-
language recipe recommenders.
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