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An overview of the 

rapidly growing body 

of work underpinning 

ambient assisted 

living aims to uncover 

the gap between the 

state of the art and 

the broad needs of 

healthcare services.

interventions from relatives, caregivers, and 
healthcare professionals.

The current challenge for the AAL inter-
disciplinary research community is discov-
ering how to build integrated, useful, and 
deployable systems that can close the loop 
from data sensing through processing en-
gines to end users. Such systems will rely on 
sensor datasets and deliver in (quasi) real 
time relevant contextual information to spe-
cific users, from clinicians and care provid-
ers to the individuals whose data are being 
collected and processed. The premise of the 
work in this area is that building profiles of 
activities of daily living (ADLs) will lead to 
useful datasets that can scale to very large 
populations, supporting early diagnosis, 
tracking the progress of chronic diseases, in-
forming personalized treatment, and encour-
aging healthy behavior changes.

These systems are composed of several 
subsystems and rely on various technolo-
gies, some of which are fit for this purpose 
and some of which are still under develop-
ment. Additional challenges arise when these 
technologies have to cope with multiple end  

users, as is typical in a domestic environ-
ment. A household often comprises several 
people who might have differing healthcare 
needs and individual preferences. For smart 
home systems to be effective in detecting and 
managing health conditions, they must pro-
vide meaningful clinical data but also be de-
sirable to their domestic users.

This article provides an overview of cur-
rent developments in the fields of sensing, 
networking, and machine learning, with an 
aim of underpinning the vision of the sensor 
platform for healthcare in a residential envi-
ronment (SPHERE) project. The main aim 
of this interdisciplinary work is to build a 
generic platform that fuses complementary 
sensor data to generate rich datasets that 
support the detection and management of 
various health conditions.

Sensing Technologies in  
Ambient Assisted Living
Sensing technologies are used in AAL for a 
range of applications. Some existing solu-
tions include physiological, environmental, 
and vision sensors that frequently assist in 

Today’s aging population and the rise in chronic health conditions is pre-

cipitating a shift toward empowering people to manage their care and 

well-being at home. In particular, advances in ambient assisted living (AAL) are 

providing resources that improve patients’ lives, as well as informing necessary 
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health monitoring in the home. They 
help characterize users’ everyday ac-
tivities by providing long-term sensing 
data that, in combination with ambi-
ent intelligence algorithms, contribute 
to behavior pattern recognition.1 In 
the following subsections, we discuss 
the distinctions frequently adopted in 
the literature and caused by the dif-
ferent data outputs and approaches. 
However, one of SPHERE’s aims is to 
integrate these various sensing modal-
ities into an Internet of Things (IoT) 
solution for AAL.

Physiological Signal Monitoring
Physiological signals provide health ev-
idence directly from the human body 
via diverse biosensors that measure var-
ious physiological parameters.2 These  
biosensors are deployed through an 
implantable (in-body), wearable (on-
body), portable (off-body), or environ-
mental modality. Of these, implantable 
sensors are the most intrusive and are 
included in this list merely for com-
pleteness—the aspiration in AAL has 
been to foster comfort through unob-
trusive technology. Further research 

into telecare, telehealth, and telemedi-
cine systems has improved biomedical 
sensing efficacy.

Recently, the advent of personal 
wearable devices for self-monitoring 
has pushed research outputs and fash-
ionable electronic gadgets into the  
consumer space. Different concept-
to-prototype systems have been pro-
posed and implemented in response 
to individual healthcare issues. Fig-
ure 1 summarizes several representa-
tive systems, their individual features, 
and their architectures.3–5 A typical 
biomedical sensing system is com-
posed of a data acquisition module 
that collects various biomedical sig-
nals, a signal-processing module, a 
communication gateway (normally a 
computer or smartphone) that for-
wards data over the Internet, and a 
monitoring center. Mobile healthcare  
(m-health) uses smartphones and hand-
held devices for biomedical signal 
monitoring.6

Almost all of these personal physio-
logical signal-monitoring systems can  
use various embedded sensors to syn-
chronize data automatically from the  

device to the network gateway or 
monitoring center. Although it’s 
promising that these wearable self-
monitoring gadgets perform activity 
tracking to collect ADL data, the case 
analysis in Figure 1 shows that several 
issues must be addressed for them to 
truly support AAL systems, including

r� lack of long-term, continuous, easy-to-
access raw data that contains rich de-
tails of clinically relevant information;

r� lack of interoperability with other 
healthcare systems; and

r� limited expandability to adapt to 
new sensing data.

The technology is moving toward 
more comfortable and desirable wear-
able devices and should build on us-
ers’ real-life attitudes and experiences. 
Two big challenges are first, the ab-
sence of ambient information related 
to the physiological data and second, 
energy consumption (battery life). The 
former could introduce sensing cogni-
tion difficulty or even bias, and the lat-
ter is actually a bottleneck to wearable 
device proliferation.
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Figure 1. Physiological signal-monitoring systems. Different concept-to-prototype systems have been proposed and 
implemented in response to various healthcare issues.
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Home Environment Monitoring
A smart home is a system of pervasive 
information and communication tech-
nologies by which both the home envi-
ronment and residents’ interactions with 
it are unobtrusively monitored.2 A list 
of sensors appears elsewhere,2 but it’s 
by no means comprehensive and has 
the potential to grow as the field of sen-
sor technologies matures. Most AAL re-
search projects use a diverse sensor port-
folio rather than single sensors in vari-
ous applications, as discussed later.

The fusion of ambient monitoring 
and signal processing techniques as-
sists with the accurate recognition of 
activities or events in the home envi-
ronment. Figure 2 provides an over-
view of some existing sensors and tech-
nology types, as well as their applica-
tions in a healthcare setting.7 It isn’t 
an exhaustive summary, but it demon-
strates different sensor modality usage.

One prominent area of application 
is fall detection8 via wearable, ambient, 

and camera-based approaches. Accurate 
localization within the home environ-
ment is another important component in 
AAL applications.9 Many ambient sen-
sor systems have been applied to address 
different health issues, such as mental 
health, emotional state, sleep measures, 
diabetes, and Alzheimer’s disease,10 
monitoring individual daily activities for 
health assessments and to detect devia-
tion from a user’s behavioral patterns. 
A good example is the Casas project,11 
which treats environments in a smart 
home as intelligent agents and uses tech-
nologies from machine learning and per-
vasive computing. Different versions of 
smart home systems serve different pur-
poses, including managing energy con-
sumption, healthcare, home automation, 
and home entertainment. They all pro-
vide rich ADL datasets, but even though 
the data is available and can help identify 
behavior profiles, they’ve been relatively 
underexplored and integrated as indica-
tors of health and well-being. The major 

challenge in this space is system and data 
integration for different commercially 
available devices to support user-friendly 
configuration.12 The datasets generated 
from those different smart home systems 
are disaggregated or less efficiently ma-
nipulated by advanced machine learning 
algorithms. A truly generic AAL system 
of systems that creates knowledge-based, 
context-aware services for AAL is yet to 
be realized.13

Vision-Based Monitoring
Intelligent visual monitoring has re-
ceived a great deal of attention in the 
past decade, especially because of in-
creased interest in smart healthcare 
systems in home environments.14  
Although a wide variety of sensing 
technologies can be used for in-home  
assistive systems, visual sensors have 
the potential to address several limita-
tions—specifically, they don’t require 
the user to wear them, and they can 
simultaneously detect multiple events.

Figure 2. Sensor taxonomy of environment, wearable, and video sensing modalities used in ambient monitoring and activity 
detection. This isn’t an exhaustive summary, but it demonstrates different sensor modality usage.
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Analysis of human motion via visual 
information has been achieved through 
the use of multicamera architectures 
in indoor and outdoor environments15 
and centralized or distributed platforms 
predicated on processing requirements 
and scalability issues. Recently, human 
motion analysis algorithms have dra-
matically improved through the com-
bination of color cameras and depth  
sensors, the main advantages of the lat-
ter being their low cost and ability to 
provide real-time, dense depth data 
without intensive processing. These de-
vices allow the extraction of detailed 
3D information from a scene, boosting 
their effectiveness in detecting the hu-
man shape. However, they suffer from 
several limitations, such as interference 
from natural light, scattering, and lim-
ited range. Although visual data pro-
vides rich information, most of it af-
fects individuals’ privacy, prompting 
researchers to develop different meth-
ods for ensuring privacy protection in 
videos and images.14 Intelligent video 
analysis lends itself well to many ap-
plication areas in health monitoring. 
Systems for daily-life assistance have 
been designed to monitor people with 
dementia, measure sleeping correlated 
with respiration, and track medication 
habits,16 with the vision systems in in-
fotainment gadgets fueling research 
interest in their use for healthcare ap-
plications.17 However, works based 
solely on computer vision techniques 
for monitoring and clinical evaluation 
of movement disorders are still in their 
infancy.

Fall detection is a major challenge in 
healthcare for the elderly, with video-
based technologies offering many ad-
vantages over popular wearable alarms 
because they don’t require user action 
and they’re always active. Recently, 
RGB-depth (RGB-D) devices have suc-
cessfully outperformed other sensing 
technologies for fall detection.8 In ad-
dition, the use of sensors on staircases 
can reflect musculoskeletal problems  
and recovery progress, with researchers 
recently proposing a general method for 
online estimation of quality of move-
ment on stairs.18

The primary limitations of video-
based systems come from cluttered en-
vironments, occluded scenes, and un-
stable lighting conditions. But even if 
these issues can be reduced by using 
multiple cameras or complementary de-
vices, such as depth sensors, they’re still 
open problems that must be tackled by 
integrating the information provided 
from different environmental sensors. 
Moreover, in most real-world applica-
tions, analyzing and processing data 
in real time is paramount, but existing 
methods can fail due to computational 
demands. The lack of a comprehensive 
and realistic dataset is also an issue.

Networking Technologies 
for Smart Homes
Existing networking technologies play 
an increasingly prominent role in mod-
ern AAL designs. In-home communi-
cations are well supported, and their 
performance, from a communication 
system perspective, is relatively well  

understood. These technologies are sta-
ble and mature, with current research 
focusing on incorporating different 
communication technologies into clin-
ical applications that feature heteroge-
neous devices with diverse communi-
cation protocols. What gives sensing 
platforms the functionality of remote 
monitoring is ubiquitous network con-
nectivity to close the loop between resi-
dents and clinicians.

Due to existing in-home infrastruc-
tures, wired technologies commonly 
provide high data-transmission rates. 
Among these, power line communica-
tion technologies are evolving in the 
field of smart home applications, espe-
cially advanced metering infrastructure 
and automated home energy manage-
ment. Widely adopted systems use X10, 
KNX, and ITU-T G.Hn, IEEE 1901.2

Various wireless networking tech-
nologies and communication proto-
cols are summarized elsewhere19; Fig-
ure 3 lists some of the typical short-
range wireless options. WiFi has the 
significant advantage of being Internet 
Protocol (IP) enabled. However, hard-
ware with WiFi connectivity is still 
relatively power hungry and less suit-
able for battery-powered sensor motes 
in applications anticipating long-term 
deployment. To break down this bar-
rier, an adaptive sublayer 6LoWPAN 
enables IPv6 for low-power, process-
ing-limited, embedded hardware over 
low-bandwidth wireless networks.

Adopting these networking technol-
ogies requires guaranteeing the nec-
essary communications throughput, 
power consumption, and hardware 
costs. Beyond this, to fully under-
pin a multimodality sensor system in 
a smart home, the IoT infrastructure 
must provide ubiquitous connectivity 
and interaction to all the sensing de-
vices in a heterogeneous network cir-
cumstance. Additional advantages can 
be gained through IP-|enabled sens-
ing networks because they remove 
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the need for translation gateways or 
proxies in hardware and software, 
thereby creating more seamlessly in-
tegrated AAL systems. However, data-
collecting points in wireless sensor 
networks must have identifiers to be 
manipulated. If a unique “name” for a 
sensor is defined by an IP (more likely, 
an IPv6) address, the data-collecting 
point can be addressable through the 
whole end-to-end system.

Other important standards such as 
UPnP/DLNA, ECHONET, Open Ser-
vice Gateway initiative (OSGi), and 
Continua Health Alliance are reviewed 
in detail elsewhere,20 but for this article, 
it suffices to say that a significant bar-
rier to their widespread use is their lim-
ited compatibility. Overlay networking 
protocols and metadata technologies 
aim to solve this problem. All AAL sys-
tems are built around a gateway device 
that provides remote access to sensor 
data to connect and bridge diverse net-
works. The home gateway implements 
multiple functions, such as a local mon-
itoring/controlling center, intelligent 
agents, and network management. No-
buo Saito reviewed the home gateway 
from a broad, practical perspective and 
proposed an architecture suitable for 
better implementation and manage-
ment.21 In the context of a sensing plat-
form for healthcare and well-being in a  
smart home, middleware solutions em-
bedded in the gateway address the  
fusion of different clusters of sensors, 
coordinating and managing highly het-
erogeneous systems. Several works 
address AAL systems specifically be-
cause middleware solutions are often 
designed for different application do-
mains—for example, openAAL middle-
ware defines a framework on top of the 
OSGi specification to facilitate integra-
tion and communication among ser-
vices, including the context manager, 
procedural manager, and composer.22 
A key factor for the IoT infrastructure 
to successfully enable AAL systems is 

to provide loosely coupled function-
ality, allowing autoconfiguration and 
 dynamic interoperability among not 
only all devices but all end users as well.

Pattern Analysis and 
Machine Learning
The performance of different sensor 
technologies, in terms of reliability, dis-
criminative ability, and monetary and 
energy costs, is context-dependent. 
Readings from individual sensors must 
be preprocessed, integrated, and mined 
to provide the most likely model of ac-
tivity that maximizes information con-
tent in the given health monitoring 
context. Moreover, the decision-mak-
ing process must be implemented and 
fine-tuned—in particular, it must con-
sider the contextual knowledge of sen-
sors and individuals.

Although we’ve seen some advances 
in applying machine learning tech-
niques to ADLs, an end-to-end system 
doesn’t currently exist in this space. 
What follows is a discussion on the 
state of the art of such a system’s indi-
vidual elements.

Quantification of Uncertainty
Multiple heterogeneous sensors in a 
real-world environment introduce dif-
ferent sources of uncertainty. At a ba-
sic level, we might have sensors that 
simply aren’t working or that are giv-
ing incorrect readings. More gener-
ally, a given sensor will at any given 
time have a particular signal-to-noise 
ratio; the types of noise corrupting the 
signal might also vary.

Consequently, we need to handle 
quantities whose values are uncertain, 
and we need a principled framework 
for quantifying uncertainty that will 
let us build solutions in ways that can 
represent and process uncertain val-
ues. A compelling approach is to build 
a model of the data-generating pro-
cess that directly incorporates each 
sensor’s noise models. Probabilistic 

(Bayesian) graphical models, coupled 
with efficient inference algorithms, 
provide a principled and flexible mod-
eling framework.23

Feature Construction, Selection, 
and Fusion
Given an understanding of data-gen-
erating processes, sensor data can be 
interpreted to identify meaningful fea-
tures, so it’s important that it’s closely 
coupled to the development of indi-
vidual sensing modalities.24 Sensors 
might have strong spatial or temporal 
correlations, or specific combinations 
of sensors might be particularly mean-
ingful. A key hypothesis underlying 
the SPHERE project25 is that once 
calibrated, many weak signals from 
particular sensors can be fused into 
a strong signal, allowing meaningful 
health-related interventions.26

Based on the calibrated and fused sig-
nals, the system must decide whether in-
tervention is required and which inter-
vention to recommend—interventions 
will need to be information gathering as 
well as health providing. This is known 
as the exploration-exploitation dilemma, 
which must be extended to address the 
challenges of costly interventions and 
complex data structures.27

Adapting to Context and 
Domain Knowledge
Data mining and decision making must 
be contextualized and situated within a 
wide body of nontrivial, health-related 
background knowledge, which in turn 
requires highly explanatory models.28 
The operating context will vary from 
training to deployment among different 
applications, residents, and households, 
so the incorporation of methods that 
are robust to these variations is critical.

Continuous data streams can be 
mined for temporal patterns that vary 
among individuals; these patterns can 
be directly built into the model-based 
framework and additionally learned on 
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both group-wide and individual levels 
to glean context-sensitive and -specific 
patterns. A recent review of methods 
for dealing with multiple heterogeneous 
data streams appears elsewhere.29

Finally, interfaces will need to com-
municate data and predictions. Such 
communications must be informa-
tive and assist in decision making—
including the ability to communicate 
uncertainty and conflicts within that 
data, which is increasingly becoming 
an important issue.30

Real-World Implementations
The premise for the SPHERE project is 
that we don’t know what data is nec-
essary to drive analytics for ADL iden-
tification and standardization across 
different homes and that single-modal-
ity sensing platforms can’t answer this 

question fully. To address this, SPHERE 
has developed a multimodality sensing  
platform to collect data from 100 
houses in the Bristol area. Figure 4 
shows the overall architecture, which 
follows a clustered-sensor approach 
and is currently installed and running 
in a real house in Bristol.

The SPHERE system uses three sens-
ing technologies: environment, video, 
and wearable sensing. The environment 
sensors include humidity, temperature, 
air quality, noise level, luminosity, oc-
cupancy, door contacts, and utility con-
sumption (water, gas, and electricity), 
centrally and at the appliance and fau-
cet level. The currently  deployed sys-
tem uses 40 nodes, providing more than 
90 data points, all structured and time 
stamped to establish context and tem-
poral relationships. The video sensors 

are RGB-D devices placed in various lo-
cations, such as the living room, kitchen, 
hall, and staircases. The video sensors 
let us gather information about resi-
dents’ cadence, gait, and 3D trajectory 
throughout the smart environment. The 
wearable  sensors are Bluetooth low en-
ergy (BLE) devices with dual accelerom-
eter data; they support dual-operation  
mode (connection-oriented and extra-low  
energy connectionless communication 
modes) to  provide full 50-Hz accelera-
tor measurements in addition to local-
ization services.

The data from each sensor cluster is 
collected in a SPHERE home gateway 
that maintains time synchronization in 
the system and, in addition, controls data 
access to ensure user privacy. The data 
from the gateway is collected by a het-
erogeneous data management platform  
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(SPHERE’s data hub), which manages 
data access and makes a  dynamic library 
of data analytics services available for 
registered end users. The current system 
is operational and undergoing scripted 
validation experiments, with multiple 
sensor domain data processed to estab-
lish ADLs against external (manual or 
automatic) activity tagging. On deploy-
ment, the data from the environment, 
wearable, and camera sensing subsys-
tems are fused and processed in real 
time for activity and health monitoring 
in longitudinal and focused studies. A 
key objective of the SPHERE project is 
to  deliver datasets with a strong focus on 
the richness of metadata annotations, as 
well as the experimental and user con-
texts to provide to the wider research 
community a platform for improved un-
derstanding of their roles in behavioral 
trends for healthcare.

Even at a high level, this overview 
reveals certain gaps and chal-

lenges caused by the multidisciplinary 
nature of the systems required to pro-
vide AAL data and applications. Some 
of these challenges aren’t unique to e-
health, but they’re happening in fields 
where researchers want data collected 
in multiple domains from multiple 
technological systems—not neces-
sarily designed or even deployed to-
gether—to bring together a cohesive, 
stable, and reliable view of the mea-
sured activities.

Although individual technologies 
will continue to be developed, whether 
wireless or wired, the main challenge 
remains the design of analytics-driven, 
data-gathering platforms that provide a 
rich set of data efficiently, reliably, and 
on-demand. SPHERE is addressing this 
by building a multimodality sensing 
system as an infrastructure platform 
fully integrated, at design stage, with 
intelligent data processing algorithms 
driving the data collection. 
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